Applications Of Derivatives Exercise 2(B)

1 Given $S=x^{2}+4 x h=1200$
and $\quad V=x^{2} h$
$\mathrm{V}(\mathrm{x})=\frac{\mathrm{x}^{2}\left(1200-\mathrm{x}^{2}\right)}{4 \mathrm{x}} ; \quad \quad \mathrm{V}(\mathrm{x})=\frac{1}{4}\left(1200 \mathrm{x}-\mathrm{x}^{3}\right)$
Put $V^{\prime}(x)=0$ gives $x=20$
If $\quad x=20, h=10$
Hence $V_{\text {max. }}=x^{2} h=(400)(10)=4000$ cubic cm .
2 Note that C_{1} is a semicircle and C_{2} is a rectangular hyperbola.
PQ will be minimum if the normal at P on the semicircle is also a normal at Q on $\mathrm{xy}=9$
Let the normal at P be $\mathrm{y}=\mathrm{mx} \quad$....(1) $(\mathrm{m}>0)$
solving it with $\mathrm{xy}=9$

$$
\begin{array}{ll}
& \mathrm{mx}^{2}=9 \quad \Rightarrow \quad \mathrm{x}=\frac{3}{\sqrt{\mathrm{~m}}} ; \mathrm{y}=\frac{9 \sqrt{\mathrm{~m}}}{3} \\
\therefore \quad & \mathrm{Q} \equiv\left(\frac{3}{\sqrt{3}}, 3 \sqrt{\mathrm{~m}}\right)
\end{array}
$$

differentiating $\mathrm{xy}=9$

$$
\begin{aligned}
& \quad x \frac{d y}{d x}+y=0 \Rightarrow \quad \frac{d y}{d x}=-\frac{y}{x} \\
& \therefore \quad \\
& \left.\quad \frac{d y}{d x}\right|_{Q}=-\frac{3 \sqrt{m} \cdot \sqrt{m}}{3}=-m
\end{aligned}
$$

$\therefore \quad$ tangent at P and Q must be parallel
$\therefore \quad-\mathrm{m}=-\frac{1}{\mathrm{~m}} \quad \Rightarrow \quad \mathrm{~m}^{2}=1 \Rightarrow \mathrm{~m}=1$
$\therefore \quad$ normal at P and Q is $\mathrm{y}=\mathrm{x}$
solving $\mathrm{P}(1,1)$ and $\mathrm{Q}(3,3)$
$\therefore \quad(\mathrm{PQ})^{2}=\mathrm{d}^{2}=4+4=8$ Ans.]
The given expression resembles with $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}$, where $y_{1}=\frac{x_{1}^{2}}{20}$ and
$\mathrm{y}_{2}=\sqrt{\left(17-\mathrm{x}_{2}\right)\left(\mathrm{x}_{2}-13\right)}$
Thus, we can thing about two points $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ lying on the curves $\mathrm{x}^{2}=20 \mathrm{y}$ and $(x-15)^{2}+y^{2}=4$ respectively.
Let D be the distance between P_{1} and P_{2} then the given expression simply represents D^{2}.
Now, as per the requirements, we have to locate the point on these curves (in the first quadrant) such that the distance between them is minimum.
Since the shortest distance between two curves always occurs along the common normal, it implies that we have to locate a point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on the parabola $\mathrm{x}^{2}=20 \mathrm{y}$ such that normal drawn to parabola at this point passes through $(15,0)$.
Now, equation of the normal to the parabola at $\left(x_{1}, y_{1}\right)$ is $\left(y-\frac{x_{1}^{2}}{20}\right)=\frac{-10}{x_{1}}\left(x-x_{1}\right)$. It should pass through (15,0).
$\Rightarrow \quad \mathrm{x}_{1}^{3}+200 \mathrm{x}_{1}-3000=0 \quad \Rightarrow \quad \mathrm{x}_{1}=10 \Rightarrow \quad \mathrm{y}_{1}=5$
$\Rightarrow \quad \mathrm{D}=\sqrt{(10-15)^{2}+5^{2}}-2=(5 \sqrt{2}-2)$
The minimum value of the given expression is $(5 \sqrt{2}-2)^{2}=(a \sqrt{2}-b)^{2}$
$\therefore \quad \mathrm{a}=5 \& \mathrm{~b}=2$
$x=t^{2} ; y=t^{3}$
$\frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{t} ; \quad \frac{\mathrm{dy}}{\mathrm{dt}}=3 \mathrm{t}^{2}$
$\frac{d y}{d x}=\frac{3 t}{2}$
$\mathrm{y}-\mathrm{t}^{3}=\frac{3 \mathrm{t}}{2}\left(\mathrm{x}-\mathrm{t}^{2}\right)$
$2 k-2 t^{3}=3 t h-3 t^{3}$
$\mathrm{t}^{3}-3 \mathrm{th}+2 \mathrm{k}=0$
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}=-2 \mathrm{k} \quad\left(\right.$ put $\mathrm{t}_{1} \mathrm{t}_{2}=-1$); hence $\mathrm{t}_{3}=2 \mathrm{k}$
now t_{3} must satisfy the equation (1) which gives $4 y^{2}=3 x-1$.
Comparing with $\mathrm{ay}^{2}=\mathrm{bx}-1$, we have $\mathrm{a}=4$ and $\mathrm{b}=3$.

5 We have $\mathrm{F}(\mathrm{x})= \begin{cases}-2 \mathrm{x}+\log _{\frac{1}{2}}\left(\mathrm{k}^{2}-6 \mathrm{k}+8\right), & -2 \leq \mathrm{x}<-1 \\ \mathrm{x}^{3}+3 \mathrm{x}^{2}+4 \mathrm{x}+1, & -1 \leq \mathrm{x} \leq 3\end{cases}$
Also $\mathrm{F}(\mathrm{x})$ is increasing on $[-1,3]$ because $\mathrm{F}^{\prime}(\mathrm{x})>0 \forall \mathrm{x} \in[-1,3]$.
And $\mathrm{F}^{\prime}(\mathrm{x})=-2 \forall \mathrm{x} \in[-2,-1)$, so $\mathrm{F}(\mathrm{x})$ is decreasing on $[-2,-1)$.
$\therefore \quad$ If $\mathrm{F}(\mathrm{x})$ has smallest value at $\mathrm{x}=-1$, then we must have

$$
\begin{align*}
& \operatorname{Lim}_{\mathrm{h} \rightarrow 0} \mathrm{~F}(-1-\mathrm{h}) \geq \mathrm{F}(-1) \\
\Rightarrow \quad & 2+\log _{1 / 2}\left(\mathrm{k}^{2}-6 \mathrm{k}+8\right) \geq-1 \quad \Rightarrow \quad \log _{1 / 2}\left(\mathrm{k}^{2}-6 \mathrm{k}+8\right) \geq-3 \Rightarrow \mathrm{k}^{2}-6 \mathrm{k}+8 \leq 8 \\
\Rightarrow \quad & \mathrm{k}^{2}-6 \mathrm{k} \leq 0 \Rightarrow \mathrm{k} \in[0,6] \tag{1}
\end{align*}
$$

But in order to define $\log _{1 / 2}\left(\mathrm{k}^{2}-6 \mathrm{k}+8\right)$,
We must have $\mathrm{k}^{2}-6 \mathrm{k}+8>0$
$\Rightarrow \quad(\mathrm{k}-2)(\mathrm{k}-4)>0 \quad \Rightarrow \quad \mathrm{k}<2$ or $\mathrm{k}>4$
$\therefore \quad$ From (1) and (2), we get $\mathrm{k} \in[0,2) \cup(4,6]$
$\Rightarrow \quad$ Possible integer(s) in the range of k are $0,1,5,6$
Hence the sum of all possible positive integer(s) in the range of $k=1+5+6=12$ Ans.]

6 We have $F(x)=\frac{x^{3}}{3}+(a-3) x^{2}+x-13$
\therefore For $\mathrm{F}(\mathrm{x})$ to have negative point of local minimum, the equation $\mathrm{F}^{\prime}(\mathrm{x})=0$ must have two distinct negative roots.
Now, $F^{\prime}(x)=x^{2}+2(a-3) x+1$
$\therefore \quad$ Following condition(s) must be satisfied simultaneously.
(i) Discriminant >0; (ii) Sum of roots <0; (iii) Product of roots >0

Now, $\mathrm{D}>0$
$\Rightarrow \quad 4(a-3)^{2}>4 \Rightarrow(a-3)^{2}-1>0 \Rightarrow(a-2)(a-4)>0$
$\therefore \quad a \in(-\infty, 2) \cup(4, \infty)$
(i)

Also $-2(a-3)<0 \Rightarrow a-3>0 \quad \Rightarrow \quad a>3$
And product of root(s) $=1>0 \forall \mathrm{a} \in \mathrm{R}$
$\therefore \quad$ (i) \cap (ii) \cap (iii) $\quad \Rightarrow \quad a \in(4, \infty)$
Hence sum of value(s) of $\mathrm{a}=5+6+7+$ \qquad $+100=5040$
7. Consider $\mathrm{y}=\mathrm{x}+\frac{1}{\mathrm{x}}-3$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=1-\frac{1}{x^{2}}=0 \\
& \therefore \quad \frac{d y}{d x}=0 \quad \Rightarrow \quad x=1 \text { or }-1
\end{aligned}
$$

As $\quad \mathrm{x} \rightarrow 0^{+}, \mathrm{y} \rightarrow \infty$ and $\mathrm{x} \rightarrow 0^{-}, \mathrm{y} \rightarrow-\infty$
Also roots of $x+\frac{1}{x}-3=0 \Rightarrow x^{2}-3 x+1=0$

$$
x=\frac{3 \pm \sqrt{9-4}}{2}=\frac{3 \pm \sqrt{5}}{2}
$$

For two distinct solutions either $p-3=0 \Rightarrow p=3$
or $\quad 1<\mathrm{p}-3<5$

$$
4<p<8
$$

Hence $p \in\{3\} \cup(4,8)$

$$
p=\{3,5,6,7\} \quad \Rightarrow \quad \text { Sum }=21 \text { Ans. }]
$$

$8 \quad$ Let $\mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{a}(\mathrm{x}-1)(\mathrm{a}>0)$ then $\mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{a}\left(\frac{\mathrm{x}^{2}}{2}-\mathrm{x}\right)+\mathrm{b}=3 \mathrm{a}\left(\mathrm{x}^{2}-2 \mathrm{x}\right)+\mathrm{b}$.
Now $f^{\prime}(-1)=0 \Rightarrow 9 a+b=0 \Rightarrow b=-9 a$.
$\therefore \quad f^{\prime}(x)=3 a\left(x^{2}-2 x-3\right)=0 \Rightarrow x=-1$ and 3 .
So $\quad y=f(-1)$ and $y=f(3)$ are two horizontal tangents.
Hence distance between its two horizontal tangents $=|f(3)-f(-1)|=|-22-10|=0032$. Ans.]
$9 \quad$ Volume $(V)=\frac{1}{3} \mathrm{~A}_{1} \mathrm{~h}_{1} \quad \Rightarrow \mathrm{~h}_{1}=\frac{3 \mathrm{~V}}{\mathrm{~A}_{1}}$
||lly $\quad h_{2}=\frac{3 V}{A_{2}}, h_{3}=\frac{3 V}{\mathrm{~A}_{3}}$ and $\mathrm{h}_{4}=\frac{3 \mathrm{~V}}{\mathrm{~A}_{4}}$
So $\left(A_{1}+A_{2}+A_{3}+A_{4}\right)\left(h_{1}+h_{2}+h_{3}+h_{4}\right)=\left(A_{1}+A_{2}+A_{3}+A_{4}\right)\left(\frac{3 V}{A_{1}}+\frac{3 V}{A_{2}}+\frac{3 V}{A_{3}}+\frac{3 V}{A_{4}}\right)$

$$
=3 \mathrm{~V}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}\right)\left(\frac{1}{\mathrm{~A}_{1}}+\frac{1}{\mathrm{~A}_{2}}+\frac{1}{\mathrm{~A}_{3}}+\frac{1}{\mathrm{~A}_{4}}\right)
$$

Now using A.M.-H.M inequality in $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}$, we get

$$
\begin{aligned}
& \frac{A_{1}+A_{2}+A_{3}+A_{4}}{4} \geq \frac{4}{\left(\frac{1}{A_{1}}+\frac{1}{A_{2}}+\frac{1}{A_{3}}+\frac{1}{A_{4}}\right)} \\
& \Rightarrow\left(A_{1}+A_{2}+A_{3}+A_{4}\right)\left(\frac{1}{A_{1}}+\frac{1}{A_{2}}+\frac{1}{A_{3}}+\frac{1}{A_{4}}\right) \geq 16
\end{aligned}
$$

Hence the minimum value of $\left(\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\mathrm{A}_{4}\right)\left(\mathrm{h}_{1}+\mathrm{h}_{2}+\mathrm{h}_{3}+\mathrm{h}_{4}\right)=3 \mathrm{~V}(16)=48 \mathrm{~V}=48 \times 5=240$ Ans.]
$10 \quad \mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{y}=-\frac{8}{\mathrm{x}} ; \quad \mathrm{q}=\mathrm{p}^{2}$ and $\mathrm{s}=-\frac{8}{\mathrm{r}}$
Equating $\frac{d y}{d x}$ at A and B, we get
$2 \mathrm{p}=\frac{8}{\mathrm{r}^{2}}$
....(1) $\Rightarrow \quad \mathrm{pr}^{2}=4$
Now $\quad m_{A B}=\frac{q-s}{p-r} \Rightarrow 2 p=\frac{p^{2}+\frac{8}{r}}{p-r} \Rightarrow p^{2}=2 p r+\frac{8}{r} \Rightarrow p^{2}=\frac{16}{r}$
$\Rightarrow \quad \frac{16}{\mathrm{r}^{4}}=\frac{16}{\mathrm{r}} \Rightarrow \mathrm{r}=1 \quad(\mathrm{r} \neq 0) \Rightarrow \mathrm{p}=4$
$\therefore \quad \mathrm{r}=1, \mathrm{p}=1$
Hence $p+r=5$
$x=0$ and $x=1$]
$y=x^{2}$
$\frac{d y}{d t}=2 x \cdot \frac{d x}{d t}$
$\frac{\mathrm{dx}}{\mathrm{dt}}=10 \mathrm{~m} / \mathrm{sec}$.
$\tan \theta=\frac{\mathrm{x}^{2}}{\mathrm{x}}=\mathrm{x}$
$\sec ^{2} \theta \cdot \frac{d \theta}{d t}=\frac{d x}{d t}$
$\frac{d \theta}{d t}=10 \times \cos ^{2} \theta=10 \times \frac{1}{10}=1 \quad\{$ at $x=3 m\}$

13
$3 x^{2}-2 y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{3 x^{2}}{2 y}$
slope of tangent at $\left(4 a^{2}, 8 a^{3}\right)=\frac{3\left(16 a^{4}\right)}{2\left(8 a^{3}\right)}=3 a$
let this tangent at this point also cuts the curve at $\left(4 b^{2}, 8 b^{3}\right)$ and normal at this point slope of normal at $\left(4 b^{2}, 8 b^{3}\right)=-\frac{1}{3 b}$.
$\Rightarrow 3 \mathrm{a}=-\frac{1}{3 \mathrm{~b}} \Rightarrow \mathrm{ab}=-\frac{1}{9}$
slope of line $=\frac{8 a^{3}-8 b^{3}}{4 a^{2}-4 b^{2}}=\frac{2\left(a^{3}-b^{3}\right)}{\left(a^{2}-b^{2}\right)}=\frac{2\left(a^{2}+b^{2}+a b\right)}{a+b}$
$=3 \mathrm{a}$ [it is equal to slope of target]
$\Rightarrow 2 \mathrm{a}^{2}+2 \mathrm{~b}^{2}+2 \mathrm{ab}=3 \mathrm{a}^{2}+3 \mathrm{ab}$
$\Rightarrow 2 \mathrm{~b}^{2}=\mathrm{a}^{2}+\mathrm{ab} \Rightarrow \frac{2}{81 \mathrm{a}^{2}}=\frac{\mathrm{a}^{2}-1}{9}$
$2=81 \mathrm{a}^{4}-9 \mathrm{a}^{2}$
$\Rightarrow 81 a^{4}-9 a^{2}-2=0$
$81 a^{4}-18 a^{2}+9 a^{2}-2=0$
$9 a^{2}\left(9 a^{2}-2\right)+\left(9 a^{2}-2\right)=0$
$\Rightarrow\left(9 a^{2}-2\right)\left(9 a^{2}+1\right)=0$
$9 a^{2}=2$
14. Let $x=r \cos \theta$ and $y=r \sin \theta$
$\Rightarrow \quad \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2} ; \tan \theta=\frac{\mathrm{y}}{\mathrm{x}} \quad \theta \in(0, \pi / 2)$
$\mathrm{N}=\frac{\mathrm{r}^{2}}{\mathrm{r}^{2}\left[\cos ^{2} \theta+\sin \theta \cos \theta+4 \sin ^{2} \theta\right]}=\frac{\mathrm{r}^{2}}{(1+\cos 2 \theta)+\sin 2 \theta+4(1-\cos 2 \theta)}=\frac{2}{5+\sin 2 \theta+3 \cos 2 \theta}$
$\mathrm{N}_{\max }=\frac{2}{5-\sqrt{10}}=\frac{2}{15}(5+\sqrt{10})=\mathrm{M}$
$\mathrm{N}_{\max }=\frac{2}{5+\sqrt{10}}=\frac{2}{15}(5-\sqrt{10})=\mathrm{m}$
$\mathrm{A}=\frac{\mathrm{M}+\mathrm{m}}{2}=\frac{2 \cdot 10}{15 \cdot 2}=\frac{2}{3} \quad \Rightarrow \quad 2007 \times \frac{2}{3}=1338$ Ans. $]$
15. $\frac{\mathrm{f}(3)}{\mathrm{f}(6)}=\frac{2^{3 \mathrm{k}}+9}{2^{6 \mathrm{k}}+9}=\frac{1}{3} ; \quad \mathrm{f}(9)-\mathrm{f}(3)=\left(2^{9 \mathrm{k}}+9\right)-\left(2^{3 \mathrm{k}}+9\right)=2^{9 \mathrm{k}}-2^{3 \mathrm{k}}$
$\Rightarrow \quad \begin{aligned} & 3\left(2^{3 k}+9\right)=2^{6 k}+9 \\ & 2^{6 k}-3\left(2^{3 k}\right)-18=0\end{aligned}$
$2^{3 \mathrm{k}}=\mathrm{y}$
$\mathrm{y}^{2}-3 \mathrm{y}-18=0$
$(y-6)(y+3)=0$
$y=6 ; y=-3$ (rejected)
$2^{3 \mathrm{k}}=6$
now $\quad \mathrm{f}(9)-\mathrm{f}(3)=2^{9 \mathrm{k}}-2^{3 \mathrm{k}} \quad\{$ from (1) $\}$

$$
\begin{aligned}
& =\left(2^{3 k}\right)^{3}-2^{3 k} \\
& =6^{3}-6=210
\end{aligned}
$$

hence $\mathrm{N}=210=2 \cdot 3 \cdot 5 \cdot 7$
Total number of divisor $=2 \cdot 2 \cdot 2 \cdot 2=16$
number of divisors which are composite $=16-(1,2,3,5,7)=11$ Ans.]
16. $\mathrm{f}(-3)=\mathrm{f}(3)=2 \quad[f(\mathrm{x})$ is an even function, $\therefore \quad f(-\mathrm{x})=f(\mathrm{x})]$
again $\mathrm{f}(-1)=\mathrm{f}(1)=-3$
$\therefore \quad 2|\mathrm{f}(-1)|=2|\mathrm{f}(1)|=2|-3|=6$
from the graph, $\quad-3<f\left(\frac{7}{8}\right)<-2$
$\therefore \quad\left[f\left(\frac{7}{8}\right)\right]=-3$
$f(0)=0 \quad$ (obviously from the graph)

$$
\begin{aligned}
& \cos ^{-1}(\mathrm{f}(-2))=\cos ^{-1}(\mathrm{f}(2))=\cos ^{-1}(1)=0 \\
& \mathrm{f}(-7)=\mathrm{f}(-7+8)=\mathrm{f}(1)=-3 \quad[\mathrm{f}(\mathrm{x}) \text { has period } 8] \\
& \mathrm{f}(20)=\mathrm{f}(4+16)=\mathrm{f}(4)=3 \quad[\mathrm{f}(\mathrm{nT}+\mathrm{x})=\mathrm{f}(\mathrm{x})] \\
& \operatorname{sum}=2+6-3+0+0-3+3
\end{aligned}
$$

$\therefore \quad$ sum $=5$

17 We have $f(x)=\left(b^{2}-3 b+2\right)\left(\cos ^{2} x-\sin ^{2} x\right)+(b-1) x+\sin 2$
$\therefore \quad f^{\prime}(x)=(b-1)(b-2)(-2 \sin 2 x)+(b-1)$
Now, $\mathrm{f}^{\prime}(\mathrm{x}) \neq 0$ for every $\mathrm{x} \in \mathrm{R}$,
so $\quad(b-1)(1-2(b-2) \sin 2 x) \neq 0 \forall x \in R$
$\therefore \quad b \neq 1$
Also, $\left|\frac{1}{2(\mathrm{~b}-2)}\right|>1 \Rightarrow \mathrm{~b} \in\left(\frac{3}{2}, 2\right) \cup\left(2, \frac{5}{2}\right)$
Now, when $b=2, f(x)=x+\sin 2 \Rightarrow f^{\prime}(x)=1(\neq 0)$.
Hence, $\mathrm{b} \in\left(\frac{3}{2}, \frac{5}{2}\right) \quad \Rightarrow \quad \mathrm{b}_{1}=\frac{3}{2}$ and $\mathrm{b}_{2}=\frac{5}{2}$
$\Rightarrow \quad\left(\mathrm{b}_{1}+\mathrm{b}_{2}\right)=\frac{3}{2}+\frac{5}{2}=\frac{8}{2}=4$
18. Let $x=r \cos \theta$ and $y=r \sin \theta$
$E=(x+5)(y+5)=(r \cos \theta+5)(r \sin \theta+5)=r^{2} \sin \theta \cos \theta+5 r(\cos \theta+\sin \theta)+25$
Now put $x=r \cos \theta$ and $y=r \sin \theta$ in $x^{2}+x y+y^{2}=3$
$\Rightarrow \quad r^{2} \cos ^{2} \theta+r^{2} \sin \theta \cos \theta+r^{2} \sin ^{2} \theta=3$
$\Rightarrow \quad r^{2}(1+\sin \theta \cos \theta)=3 \Rightarrow r^{2}=\frac{3}{1+\sin \theta \cos \theta}=\frac{6}{2+\sin 2 \theta}$
hence $\left.\left.\quad r^{2}\right]_{\min .}=2+\sin 2 \theta\right]_{\max .}=3$ occurs at $\sin 2 \theta=1 \Rightarrow 2 \theta=\frac{\pi}{2}$ or $\frac{5 \pi}{2}$ i.e. $\frac{\pi}{4}$ or $\frac{5 \pi}{4}$
Hence $E=\frac{r^{2}}{2}(\sin 2 \theta)+5 r(\cos \theta+\sin \theta)+25$
put $\quad r^{2}=2$ and $\theta=\frac{\pi}{4} \Rightarrow E=1+5 \sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)+25=36$
put $\quad \mathrm{r}^{2}=2$ and $\theta=\frac{5 \pi}{4} \Rightarrow \mathrm{E}=1+5 \sqrt{2}\left(-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)+25=16$
hence minimum value of E is 16
19. Using LMVT for f in $[1,2]$

$$
\begin{align*}
\forall \mathrm{c} \in(1,2) \quad & \frac{\mathrm{f}(2)-\mathrm{f}(1)}{2-1}=\mathrm{f}^{\prime}(\mathrm{c}) \leq 2 \\
& \mathrm{f}(2)-\mathrm{f}(1) \leq 2 \quad \Rightarrow \quad \mathrm{f}(2) \leq 4 \tag{1}
\end{align*}
$$

again using LMVT in [2, 4]

$$
\begin{array}{cl}
\forall \mathrm{d} \in(2,4) & \frac{\mathrm{f}(4)-\mathrm{f}(2)}{4-2}=\mathrm{f}^{\prime}(\mathrm{d}) \leq 2 \\
\therefore \quad \mathrm{f}(4)-\mathrm{f}(2) \leq 4
\end{array}
$$

$$
\begin{align*}
& 8-\mathrm{f}(2) \leq 4 \\
& 4 \leq \mathrm{f}(2) \quad \Rightarrow \quad \mathrm{f}(2) \geq 4 \tag{2}
\end{align*}
$$

from (1) and (2) $\quad f(2)=4$
20. Let x tree be added then

$$
\mathrm{P}(\mathrm{x})=(\mathrm{x}+50)(800-10 \mathrm{x})
$$

$$
\text { now } \quad P^{\prime}(x)=0 \quad \Rightarrow \quad x=15
$$

