APPLICATIONS OF DERIVATIVES EXERCISE 2(A)

1. $y = x^{1/3}(x-1)$

$$\frac{dy}{dx} = \frac{4}{3}x^{1/3} - \frac{1}{3} \cdot \frac{1}{x^{2/3}} = \frac{1}{3x^{2/3}} [4x - 1]$$
hence f is \uparrow for x > $\frac{1}{4}$
and f \downarrow for x < $\frac{1}{4}$

$$\int x^{2/3} is always positive and at x = 1/4$$
and f \downarrow for x < $\frac{1}{4}$

$$\int x^{2/3} is always positive and at x = 1/4$$
for x < $\frac{1}{4}$

$$\int x^{2/3} is always positive and at x = 1/4$$
and f \downarrow for x < $\frac{1}{4}$

$$\int x^{2/3} is always positive and at x = 1/4$$
and f \downarrow for x < $\frac{1}{4}$

$$\int x^{2/3} is always positive and at x = 1/4$$
and f \downarrow for x < $\frac{1}{4}$

$$\int x^{2/3} is always positive and at x = 1/4$$
and f \downarrow for x < $\frac{1}{4}$

$$\int x^{2/3} is always positive and at x = 1/4$$
and f \downarrow for x < $\frac{1}{4}$

$$\int x^{2/3} \frac{1}{3} \cdot x^{-2/3}$$
(non existent at x = 0, vertical tangent)
$$f^*(x) = \frac{4}{3} \cdot \frac{1}{x^{2/3}} + \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{x^{2/3}}$$

$$= \frac{2}{9x^{2/3}} \left[2 + \frac{1}{3} \right] = \frac{2}{9x^{2/3}} \left[\frac{2x + 1}{x} \right]$$

$$= \frac{2}{9x^{2/3}} \left[2 + \frac{1}{x} \right] = \frac{2}{9x^{2/3}} \left[\frac{2x + 1}{x} \right]$$

$$= \frac{1}{9x^{2/3}} \left[4 + \frac{1}{3} \right] = \frac{2}{9x^{2/3}} \left[\frac{2x + 1}{x} \right]$$

$$= \frac{1}{9x^{2/3}} \left[4 + \frac{3}{3} \right] \left[\frac{2}{9x^{2/3}} - \frac{3}{4} \cdot \frac{4^{4/3}}{3} \right]_{0}^{1}$$

$$= \left| \frac{3}{7} - \frac{3}{4} \right| = 3 \left| \frac{4 - 7}{28} \right| = \frac{9}{28} \Rightarrow (D) \right]$$
2. $\frac{dy}{dx}$ = slope fo tangent
$$-\frac{1}{1^2} = -\frac{b}{a} \qquad \therefore \frac{a}{b} = t^2 > 0 \qquad \Rightarrow a \text{ and b are of same sign.}$$
3. $f'(x) = \sqrt{1 - x^4} > 0 \text{ in (-1, 1) $\Rightarrow \text{ fis } \uparrow$
Now $f(x) + f(-x) = \int_{0}^{x} \sqrt{1 - t^4} dt + \int_{0}^{x} \sqrt{1 - t^4} dt + \left(-\frac{y}{9} \sqrt{1 - y^4} dy \right) (t = -y)$

$$= 0 \Rightarrow f(x) \text{ is odd}$$
again f''(x) = $\frac{-4x^3}{2\sqrt{1 - x^4}}$ which vanished at x = 0 and changes sign $\Rightarrow (0, 0)$ is inflection since f is well defined in [-1, 1] $\Rightarrow A, B, C, D$]
4. Since intercepts are equal in magnitude but opposite in sign $\Rightarrow \frac{dy}{dx} = 1$$

now
$$\frac{dy}{dx} = x^2 - 5x + 7 = 1 \implies x^2 - 5x + 6 = 0 \implies x = 2 \text{ or } 3$$
]

5.
$$h(x) = \frac{\ell n \left(f(x) \cdot g(x)\right)}{\ell n a} = \frac{\ell n a^{\left\{a^{|x|} \cdot \operatorname{sgn} x\right\} + \left[a^{|x|} \cdot \operatorname{sgn} x\right]}}{\ell n a}$$
$$= \left\{a^{|x|} \cdot \operatorname{sgn} x\right\} + \left[a^{|x|} \cdot \operatorname{sgn} x\right] = a^{|x|} \cdot \operatorname{sgn} x \quad (\therefore \{y\} + [y] = y)$$
$$= \begin{bmatrix}a^{x} \quad \text{for } x > 0\\0 \quad \text{for } x = 0 \qquad \Rightarrow \qquad h(x) \text{ is an odd function }]\\-a^{-x} \quad \text{for } x < 0\end{bmatrix}$$
6.
$$f'(x) = 100 \ x^{99} + \cos x$$

for
$$x \in (0,1)$$
 and $\left(0,\frac{\pi}{2}\right)$, cosx and x are both +ve $\Rightarrow \uparrow$
for $x \in \left(\frac{\pi}{2}, \pi\right)$, x > 1 hence 100 x⁹⁹ obviously > cosx $\Rightarrow \uparrow$

7. Note that f (x) is continuous at x=2 and f is decreasing for (2, 3) and increasing for [-1, 2]. At x = 2 f has a maxima hence (A) is not correct.

1

]

8. Graph of $y = f(x) \implies (A)$ and (C)

If f and g are inverse then (fog)(x) = xf'[g(x)]g'(x) = 1if f is increasing sign of g ' is also + ve \Rightarrow $f' > 0 \implies$ (A) is correct \Rightarrow $f' < 0 \implies$ If f is decreasing \Rightarrow sign of g 'is – ve (B) is false \Rightarrow since f has an inverse \Rightarrow f is bijective \Rightarrow f is injective \Rightarrow (C) is correct inverse of a bijective mapping is bijective g is also bijective g is onto (D) is correct] \Rightarrow \Rightarrow \Rightarrow

(0,-1)

10. f(x) = ln (1 - ln x)domain (0, e)

9.

f'(x) = $-\frac{1}{(1-ln x)} \cdot \frac{1}{x} < 0 \implies \text{decreasing } \forall x \text{ in its domain} \implies (A) \& (B) \text{ are incorrect}$ f'(1) = $-1 \implies (C) \text{ is also incorrect}$

also f(1) = 0; $\lim_{x \to e^{-1}} f(x) \to -\infty;$ $\lim_{x \to 0^+} f(x) \to \infty$ $f''(x) = \frac{-\ln x}{x^2(1 - \ln x)^2}$

f''(1) = 0 which is a point of inflection graph is as shown

y axis and x = e are two asymptotes

- 11. f is obvious continuous $\forall x \in R$ and not derivable at -1 and 1 f'(x) changes sign 4 times at -1, 0, 1, 2 local maxima at 1 and -1local minima at x = 0 and 2]
- y -2 -1 0 1 2 x

]

(1,0)

12. Domain is $x \in R$

13.

Also
$$f(x) = \left[\cos\left(\tan^{-1}(\sin\theta)\right)\right]^2$$
 where $\cot \theta = x$

$$= \left[\cos\left(\tan^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)\right)\right]^2 = (\cos\phi)^2 \text{ where } \tan\phi = \frac{1}{\sqrt{1+x^2}}$$

$$= \left(\frac{\sqrt{1+x^2}}{\sqrt{2+x^2}}\right)^2$$

$$g(x) = \frac{1+x^2}{2+x^2} = 1 - \frac{1}{2+x^2}$$
range is $\left[\frac{1}{2}, 1\right]$; $f'(x) = \frac{2x}{(2+x^2)^2}$
hence $f'(0) = 0$
also $\lim_{x\to\infty} f(x) = 1$
hence (B), (C), (D)]
Let the tangent line be $y = ax + b$
The equation for its intersection with the upper parabola is
 $x^2 + 1 = ax + b$
 $x^2 - ax + (1-b) = 0$
This has a double root when $a^2 - 4(1-b) = 0$ or $a^2 + 4b = 4$
For the lower parabola
 $ax + b = -x^2$
 $x^2 + ax + b = 0$
This has a double root when $a^2 - 4b = 0$
subtract these two equations to get $8b = 4$ or $b = 1/4$
add them to get $2a^2 = 4$ or $a = \pm \sqrt{2}$
The tangent lines are $y = \sqrt{2}x + \frac{1}{2}$ and $y = -\sqrt{2}x + \frac{1}{2}$

14.
$$f(x) = \int_{0}^{\pi} \cos t \cos(x - t) dt$$
(1)
 $= \int_{0}^{\pi} -\cos t \cdot \cos(x - \pi + t) dt$
 $f(x) = \int_{0}^{\pi} \cos t \cdot \cos(x + t) dt$ (2)
(1) + (2) gives
 $2 f(x) = \int_{0}^{\pi} \cos t (2 \cos x \cdot \cos t) dt$

$$\therefore \qquad f(x) = \cos x \int_{0}^{\pi} \cos^{2} t \, dt = 2 \cos x \int_{0}^{\pi/2} \cos^{2} t \, dt$$
$$f(x) = \frac{\pi \cos x}{2} \text{ Now verify.} \quad \text{Only (A) \& (B) are correct.}$$

15. (A)
$$f(x) = x - \tan^{-1}x$$

 $f'(x) = 1 - \frac{1}{1+x^2} = \frac{x^2}{1+x^2} > 0 \implies f \text{ is increasing in } (0, 1)$
 $f(x) > f(0) \text{ but } f(0) = 0$
 $f(x) > 0 \implies x > \tan^{-1}x \text{ in } (0, 1)$
(B) $f(x) = \cos x - 1 + \frac{x^2}{2}$
 $f'(x) = -\sin x + x = x - \sin x > 0 \text{ in } (0, 1) \implies (B) \text{ is not correct}$
(C) $f(x) = 1 + x \ln \left(x + \sqrt{1+x^2} \right) - \sqrt{1+x^2}$
 $f'(x) = x \left(\frac{1 + \frac{1}{2} \cdot \frac{2x}{\sqrt{1+x^2}}}{x + \sqrt{1+x^2}} \right) + \ln \left(x + \sqrt{1+x^2} \right) - \frac{x}{\sqrt{1+x^2}}$
 $= \frac{x}{\sqrt{1+x^2}} + \ln \left(x + \sqrt{1+x^2} \right) - \frac{x}{\sqrt{1+x^2}} > 0 \quad \forall x \in \mathbb{R}$
 $\Rightarrow (C) \text{ is true}$
(D) $f(x) = x - \frac{x^2}{2} - \ln(1+x)$

f'(x) = (1 - x) -
$$\frac{1}{1 + x} = \frac{(1 - x^2) - 1}{1 + x} = -\frac{x^2}{1 + x} < 0 \implies$$
 (D) is correct

hence f(x) is decreasing in (0, 1)

 $\therefore \qquad f(x) < f(0)$

$$f(x) < 0 \qquad \Rightarrow \qquad x - \frac{x^2}{2} < ln(1+x)$$
]

16.
$$f'(x) = \frac{2-x}{x^3}$$
 and $f''(x) = \frac{x-3}{x^4}$. Now interpret

17. (A) f(x) has no relative minimum on (-3, 4) (B) f(x) is continuous function on [-3, 4] $\Rightarrow f(x)$ has min. and max. on [-3, 4] by IVT (C) $f''(x) > 0 \Rightarrow f(x)$ is concave upwards on [-3, 4]

- (D) f(3) = f(4)By Rolle's theorem $\exists c \in (3, 4), \text{ where } f'(c) = 0$ $\Rightarrow \exists \text{ critical point on } [-3, 4]$
- 18. (A) False, e.g. $f(x) = \sin \sqrt{x}$ (B) True, from IVT

(C) True as $\lim_{x\to\infty} \sin^{-1}\left(1+\frac{1}{x}\right) = \sin^{-1}(a \text{ quantity greater than one}) \implies \text{not defined}$ (D) True, as the line passes through the centre of the circle.

19.

(A) Let
$$\ell = \lim_{x \to 0} \frac{x \int_{0}^{x} e^{t^{2}} dt}{-(e^{x} - x - 1)} \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{x \int_{0}^{x} e^{t^{2}} dt}{-x^{2} \left(\frac{e^{x} - x - 1}{x^{2}}\right)} = -2 \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{x} \left(\frac{0}{0}\right) = -2 \lim_{x \to 0} \frac{e^{x^{2}}}{1} = -2$$

(B)
$$14x^2 - 7xy + y^2 = 2$$

$$\frac{dy}{dx} = \frac{28x - 7y}{7x - 2y} \qquad \dots (1)$$
if $x = 1$ then $14 - 7y + y^2 = 2 \qquad \Rightarrow \qquad y^2 - 7y + 12 = 0 \qquad \Rightarrow \qquad y = 3 \text{ or } 4$
hence $L(1, 3)$ and $M(1, 4)$
slope of tangent at $L = \frac{28 - 21}{7 - 6} = 7$; slope of tangent at $M = \frac{28 - 28}{7 - 8} = 0$
equation of tangent at L and M are
 $y - 3 = 7(x - 1) \qquad \Rightarrow \qquad y = 7x - 4$
and $y - 4 = 0(x - 1) \qquad \Rightarrow \qquad y = 4$
hence $N = \left(\frac{8}{7}, 4\right) \qquad \Rightarrow \qquad (C)$
(C) If n is odd then graph of f (x) is
 a_3 is the only point where
f (x) has its minimum value
If n is even then graph of f (x) is
From a_2 to a_3 at all values of x, f (x) is minimum.
 (1)
 $2lc + m = (lb^2 + mb) \frac{-(la^2 + my)}{b - a} = l(b^2 - a^2) + m(b - a) = l(b + a) + m; \ c = \frac{a + b}{2}$
20. We have f'(x) = 5 sin^4x cos x - 5 cos^4x sin x = 5 sin x cos x(sin x - cos x)(1 + sin x cos x)
 \therefore f'(x) = 0 at $x = \frac{\pi}{4}$. Also f'(0) = f'($\frac{\pi}{2}$) = 0
Hence \exists some $c \in \left(0, \frac{\pi}{2}\right)$ for which f'(c) = 0 (By Rolle's Theorem) \Rightarrow (C) is correct.

Also in $\left(0, \frac{\pi}{4}\right)$ f is decreasing and in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ f is increasing \Rightarrow minimum at $x = \frac{\pi}{4}$ As $f(0) = f\left(\frac{\pi}{2}\right) = 0 \Rightarrow 2$ roots \Rightarrow (**D**) is correct.]

21. $f(x) = tan^{-1}(x)$ is defined on R and is strictly increasing but do not have its range R]

22.
$$f(0) = 1; f(2) = 2$$

 $f(1^{-}) = f(1^{+}) = f(1) = 2$]

23.
$$f(x) = ln(2 + x) - \frac{2x + 2}{x + 3}$$
 is continuous in $(-2, \infty)$

$$f'(x) = \frac{1}{x+2} - \frac{4}{(x+3)^2} = \frac{(x+3)^2 - 4(x+2)}{(x+2)(x+3)^2}$$
$$= \frac{x^2 + 2x + 1}{(x+2)(x+3)^2} = \frac{(x+1)^2}{(x+2)(x+3)^2} > 0 \qquad (f'(x) = 0 \text{ at } x = -1)$$
$$\Rightarrow \quad f \text{ is increasing in } (-2, \infty)$$

also $\lim_{x \to -2^+} f(x) \to -\infty$ and $\lim_{x \to \infty} f(x) \to \infty \Rightarrow$ unique root]

24. Let
$$f(x) = 0$$
 has two roots say $x = r_1$ and $x = r_2$ where $r_1, r_2 \in [a, b]$
 $\Rightarrow f(r_1) = f(r_2)$
hence \exists there must exist some $c \in (r_1, r_2)$ where $f'(c) = 0$
but $f'(x) = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1$
for $|x| \ge 1$, $f'(x) = (x^6 - x^5) + (x^4 - x^3) + (x^2 - x) + 1 > 0$
for $|x| \le 1$, $f'(x) = (1 - x) + (x^2 - x^3) + (x^4 - x^5) + x^6 > 0$
hence $f'(x) > 0$ for all x
 \therefore Rolles theorem fails \Rightarrow $f(x) = 0$ can not have two or more roots.]

25. Consider the example of $f(x) = e^x$ and $f'(x) = e^x$ both increasing]

Paragraph for question nos. 26 to 27

(i) We have $f(x) = x 2^{-x}$ So, $f'(x) = 2^{-x} (1 - x \ln 2)$ and $f''(x) = 2^{-x} \ln 2 (x \ln 2 - 2)$

Clearly, f(x) is increasing in $\left(-\infty, \frac{1}{ln2}\right)$ and decreasing in $\left(\frac{1}{ln2}, \infty\right)$.

Graph of $f(x) = x 2^{-x}$

(ii)
$$\in \left(0, \frac{1}{e \ln 2}\right).$$

Given $f(x) = x 2^{-x}$ and $g(x) = \max \{f(t) : x \le t \le x + 1\}$ (iii) As f(x) is increasing in $\left(-\infty, \frac{1}{ln2}\right)$, hence maximum value of g(x) occurs at t = x + 1 $g(x) = f(x + 1) = (x + 1) 2^{-(x + 1)}$ *.*..

Let
$$I = \int_{0}^{\frac{1}{\ln^{2}} - 1} g(x) dx = \int \underbrace{(x+1)}_{(I,B,P,)} \underbrace{2^{-(x+1)}}_{I} dx$$

$$= -\frac{(x+1)}{\ln 2} \underbrace{2^{-(x+1)}}_{0} = \frac{1}{\ln^{2}} - 1 + \frac{1}{\ln^{2}} \underbrace{\int_{0}^{\frac{1}{\ln^{2}} - 1}}_{0} + \frac{1}{\ln^{2}} \underbrace{\int_{0}^{1} 2^{-(x+1)}}_{0} dx$$

$$= -\frac{(x+1)}{\ln^{2}} 2^{-(x+1)} = \frac{1}{\ln^{2}} - \frac{1}{\ln^{2}^{2}} 2^{-(x+1)} = -\frac{1}{\ln^{2}^{2}} - \frac{1}{\ln^{2}^{2}} + \frac{1}{2\ln^{2}} - \frac{1}{\ln^{2}^{2}} + \frac{1}{2\ln^{2}} + \frac{1}{2\ln^{2}^{2}} + \frac{1}{2\ln^{2}^{2}}$$

Paragraph for question nos. 29 to 31

(1)
$$\lim_{x \to 0^+} x \ln\left(1 + \frac{1}{x}\right) = \lim_{x \to 0^+} \frac{\ln\left(\frac{x+1}{x}\right)}{\frac{1}{x}} \quad \left(\frac{\infty}{\infty}\right)$$

Using L'Hospital's Rule

$$l = \lim_{x \to 0} -\left(\frac{1}{x+1} - \frac{1}{x}\right) x^2 = \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x+1}\right) \cdot x^2 = \lim_{x \to 0} \frac{1}{x(x+1)} \cdot x^2 = \lim_{x \to 0} \frac{x}{(x+1)} = 0 \text{ Ans.}$$

Lim f(x) =1 (can be verified)

(2) ii be vermeu) $x \rightarrow 0$

$$\lim_{x\to\infty} f(x) = 0$$

Also f is increasing for all $x > 0 \implies (D)$ (can be verified)

}

(3)
$$l = \left(\prod_{k=1}^{n} \left(1 + \frac{n}{k}\right)^{k/n}\right)^{1/n}$$
 {given $f(x) = (1 + 1/x)^x$ and $f(k/n) = \left(1 + \frac{n}{k}\right)^{k/n}$

taking log,

$$ln \ l = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{k=1}^{n} ln \left(1 + \frac{n}{k} \right)^{k/n} = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{k=1}^{n} \frac{k}{n} ln \left(1 + \frac{1}{k/n} \right) dx$$
$$= \int_{0}^{1} \underbrace{x}_{0} \frac{ln \left(1 + \frac{1}{x} \right)}{1} dx = ln \left(1 + \frac{1}{x} \right) \cdot \frac{x^{2}}{2} \int_{0}^{1} + \int_{0}^{1} \left(\frac{1}{x} - \frac{1}{x+1} \right) \cdot \frac{x^{2}}{2} dx$$

$$= \left(\frac{1}{2}\ln 2 - 0\right) + \frac{1}{2}\int_{0}^{1} \frac{x+1-1}{x+1} dx = \frac{1}{2}\ln 2 + \frac{1}{2}\left[x-\ln(x+1)\right]_{0}^{1}$$
$$= \frac{1}{2}\ln 2 + \frac{1}{2}\left[(1-\ln 2) - 0\right] = \frac{1}{2}$$
$$l = \sqrt{e}$$

Paragraph for question nos. 32 to 34

y =
$$\frac{x^2}{x^2 - 1}$$
; not defined at x = ± 1
= 1 + $\frac{1}{x^2 - 1}$; y'= $-\frac{2x}{(x^2 - 1)^2}$
dy

 $\frac{dy}{dx} = 0 \implies x = 0 \text{ (point of maxima)}$ as $x \to 1^+, y \to \infty$; $x \to 1^-, y \to -\infty$ |||ly $x \to -1^+, y \to -\infty$; $x \to -1^-, y \to \infty$ The graph of $y = \frac{x^2}{x^2 - 1}$ is as shown verify all alternativels from the graph.

Paragraph for question nos. 35 to 37

(i) a = 1 $f(\mathbf{x}) = 8x^3 + 4x^2 + 2bx + 1$ $f'(x) = 24x^2 + 8x + 2b = 2(12x^2 + 4x + b)$ for increasing function, $f'(x) \ge 0 \quad \forall x \in R$ $D \le 0 \implies 16 - 48b \le 0$ ÷. $\Rightarrow \qquad b \ge \frac{1}{3} \implies \qquad (\mathbf{C})$ **(ii)** if b = 1 $f(x) = 8x^3 + 4ax^2 + 2x + a$ $f'(x) = 24x^2 + 8ax + 2$ $2(12x^2 + 4ax + 1)$ or for non monotonic f'(x) = 0 must have distinct roots hence D > 0 i.e. $16a^2 - 48 > 0 \Rightarrow$ $a^2 > 3;$ $a > \sqrt{3}$ or $a < -\sqrt{3}$... *.*.. a ∈ 2, 3, 4, sum = 5050 - 1 = 5049 Ans. If x_1 , x_2 and x_3 are the roots then $\log_2 x_1 + \log_2 x_2 + \log_2 x_3 = 5$ (iii) $\log_2(x_1x_2x_3) = 5$ $x_1x_2x_3 = 32$ $-\frac{a}{8}=32$ a = -256 Ans.] \Rightarrow

38. (A) R; (B) R, S, T; (C) Q; (D) Q

(A)
$$I = \int_{\sqrt{2}-1}^{\sqrt{2}+1} \frac{(x^2+1)^2 - (x^2-1)}{(x^2+1)^2} dx = \int_{\sqrt{2}-1}^{\sqrt{2}+1} \left(1 - \frac{(x^2-1)}{(x^2+1)^2}\right) dx = 2 - \int_{\frac{\sqrt{2}-1}{I_1}}^{\sqrt{2}+1} \frac{(x^2-1)}{(x^2+1)^2} dx$$

$$I_{1} = \int_{1/a}^{a} \frac{(x^{2} - 1)}{(x^{2} + 1)^{2}} dx \text{ where } (a = \sqrt{2} + 1); \quad \text{put } x = \frac{1}{t} \implies dx = -\frac{1}{t^{2}} dt$$
$$= \int_{a}^{1/a} \frac{\frac{1}{t^{2}} - 1}{\left(\frac{1}{t^{2}} + 1\right)^{2}} \cdot \left(-\frac{1}{t^{2}}\right) dt = -\int_{a}^{1/a} \frac{(1 - t^{2})t^{4}}{t^{4}(1 + t^{2})^{2}} dt = -\int_{a}^{1/a} \frac{(1 - t^{2})}{(1 + t^{2})^{2}} dt = \int_{a}^{1/a} \frac{t^{2} - 1}{(t^{2} + 1)^{2}} dt$$

$$= -\int_{1/a}^{a} \frac{t^2 - 1}{(t^2 + 1)^2} dt = -I_1$$

(B)

 $\Rightarrow 2I_1 = 0 \Rightarrow I_1 = 0 \Rightarrow 2 \text{ is the answer.}]$ Domain of f (x) is (0, 1) \cup (1, ∞) $ln f (x) = 1 \Rightarrow f (x) = e = constant$

$$f'(x) = 0$$
, for all in $(0, \infty) - \{1\}$

(C) Clearly (1, 0) is the point of intersection of given curves.

Now,
$$f'(x) = \frac{2^x}{x} + 2^x (ln2) (lnx)$$

 \therefore Slope of tangent to the curve f (x) at (1, 0) = m₁ = 2

Similarly,
$$g'(x) = \frac{d}{dx}(e^{2x \ln x} - 1) = x^{2x}\left(2x \times \frac{1}{x} + 2\ln x\right)$$

:. Slope of tangent to the curve g (x) at $(1, 0) = m_2 = 2$ since $m_1 = m_2 = 2$

 \Rightarrow Two curves touch each other, so angle between them is 0. Hence $\cos\theta = \cos \theta = 1$

(D) $3y^2y' - 3y - 3xy' = 0 \implies y' = \frac{y}{y^2 - x}$ $y' = 0 \implies y = 0$, no real x. $y' = \infty \implies y^2 = x \implies y^3 = 1, y = 1$ The point is (1, 1)

39. (A)
$$\rightarrow$$
 R,(B) \rightarrow Q,(C) \rightarrow P,(D) \rightarrow S

(A)
$$\frac{dy}{dx} = \frac{4t}{3}$$
, Tangent is $y - at^4 = \frac{4t}{3}(x - at^3)$
x-intercept $= \frac{at^3}{4}$
y-intercept $= -\frac{at^4}{3}$

the point of intersection of tangent with the axes are $\left(\frac{at^3}{4}, 0\right)$ and $\left(0, -\frac{at^4}{3}\right)$

$$A\left(0,-\frac{at^4}{3}\right) \qquad B\left(\frac{at^3}{4},0\right) \qquad P\left(at^2,at^4\right)$$

P divids AB externaly in 4:3

$$\therefore \qquad \frac{m}{n} = \frac{4}{3} \qquad \implies \qquad m = 4 \& n = 3$$

as m & n are coprime to each other

(B)
$$\frac{dx}{dy} = e^{\sin y} \cos y$$
: slope of normal $= -1$

equation of normal is x + y = 1

Area
$$=\frac{1}{2}$$

(C) $y = \frac{1}{x^2} : \frac{dy}{dx} = -\frac{1}{x^3} :$ slope of tangent = -2 $y = e^{2-2x} : \frac{dy}{dx} = e^{2-2x} \cdot (-2) :$ slope of tangent = -2

$$\therefore \tan_{\#} = 0$$

(D) Length of subtangent
$$= \left| \frac{y}{y'} \right| = \left| \frac{be^{x/3}}{b\frac{1}{2}e^{x/3}} \right| = 3$$

40 (A)
$$\rightarrow$$
 (q),(B) \rightarrow (r),(C) \rightarrow (q),(D) \rightarrow (q)
 $y = f(x) + \frac{1}{x}$ so $y > 0$
Now $f(y)f\left(f(y) + \frac{1}{y}\right) = 1$ also $f(x)f(y) = 1$
 $\therefore f(x) = f\left(f(y) + \frac{1}{y}\right) = f\left(\frac{1}{f(x)} + \frac{1}{f(x) + 1/x}\right)$

also f(x) is increasing

$$\therefore x = \frac{1}{f(x)} + \frac{1}{f(x) + 1/x}$$

$$\Rightarrow f(x) = \frac{1 \pm \sqrt{5}}{2x}$$

now $f(x) = \frac{1 + \sqrt{5}}{2x}$ is decreasing so discarding it $f(x) = \frac{1 - \sqrt{5}}{2x}$.