APPLICATIONS OF DERIVATIVES
 EXERCISE 2(A)

1. $\mathrm{y}=\mathrm{x}^{1 / 3}(\mathrm{x}-1)$
$\frac{d y}{d x}=\frac{4}{3} x^{1 / 3}-\frac{1}{3} \cdot \frac{1}{x^{2 / 3}}=\frac{1}{3 x^{2 / 3}}[4 x-1]$
hence f is \uparrow for $\mathrm{x}>\frac{1}{4}$
and $\quad \mathrm{f} \downarrow$ for $\left.\mathrm{x}<\frac{1}{4} \quad\right] \begin{aligned} & x^{2 / 3} \text { is always positive and at } x=1 / 4 \\ & \text { the curves has a local minima }\end{aligned}$
now $\quad f^{\prime}(x)=\frac{4}{3} x^{1 / 3}-\frac{1}{3} \cdot x^{-2 / 3} \quad$ (non existent at $x=0$, vertical tangent)

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{4}{9} \cdot \frac{1}{x^{2 / 3}}+\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{x^{5 / 3}} \\
& =\frac{2}{9 x^{2 / 3}}\left[2+\frac{1}{x}\right]=\frac{2}{9 x^{2 / 3}}\left[\frac{2 x+1}{x}\right]
\end{aligned}
$$

$\therefore \quad \mathrm{f} "(\mathrm{x})=0$ at $\mathrm{x}=-\frac{1}{2}$ (inflection point)
graph of $f(x)$ is as

$$
\begin{aligned}
A & \left.=\int_{0}^{1}\left(x^{4 / 3}-x^{1 / 3}\right) d x=\frac{3}{7} x^{3 / 7}-\frac{3}{4} x^{4 / 3}\right]_{0}^{1} \\
& \left.=\left|\frac{3}{7}-\frac{3}{4}\right|=3\left|\frac{4-7}{28}\right|=\frac{9}{28} \Rightarrow \text { (D) }\right]
\end{aligned}
$$

2. $\frac{d y}{d x}=$ slope fo tangent
$-\frac{1}{\mathrm{t}^{2}}=-\frac{\mathrm{b}}{\mathrm{a}} \quad \therefore \frac{\mathrm{a}}{\mathrm{b}}=\mathrm{t}^{2}>0 \quad \Rightarrow \mathrm{a}$ and b are of same sign.
3. $\mathrm{f}^{\prime}(\mathrm{x})=\sqrt{1-\mathrm{x}^{4}}>0$ in $(-1,1) \Rightarrow \mathrm{f}$ is \uparrow

Now $f(x)+f(-x)=\int_{0}^{x} \sqrt{1-t^{4}} d t+\int_{0}^{-x} \sqrt{1-t^{4}} d t \Rightarrow \int_{0}^{x} \sqrt{1-t^{4}} d t+\left(-\int_{0}^{y} \sqrt{1-y^{4}} d y\right)(t=-y)$

$$
=0 \Rightarrow \mathrm{f}(\mathrm{x}) \text { is odd }
$$

again $\mathrm{f}^{\prime \prime}(\mathrm{x})=\frac{-4 \mathrm{x}^{3}}{2 \sqrt{1-\mathrm{x}^{4}}}$ which vanished at $\mathrm{x}=0 \quad$ and changes sign $\Rightarrow(0,0)$ is inflection since f is well defined in $[-1,1] \Rightarrow A, B, C, D]$
4. Since intercepts are equal in magnitude but opposite in sign $\left.\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\mathrm{P}}=1$
now $\frac{d y}{d x}=x^{2}-5 x+7=1 \quad \Rightarrow \quad x^{2}-5 x+6=0 \Rightarrow \quad x=2$ or $\left.3 \quad\right]$
5. $\quad \mathrm{h}(\mathrm{x})=\frac{\ell \mathrm{n}(\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x}))}{\ell \mathrm{na}}=\frac{\ell \mathrm{na}^{\left\{\mathrm{a}^{|\mathrm{x}|} \cdot \operatorname{sgnx}\right\}+\left[\mathrm{a}^{|\mathrm{x}|} \cdot \operatorname{sgnx}\right]}}{\ell \mathrm{na}}$

$$
\begin{aligned}
& =\left\{\mathrm{a}^{|\mathrm{x}|} \operatorname{sgn} \mathrm{x}\right\}+\left[\mathrm{a}^{\mid \mathrm{xx}} \operatorname{sgn} \mathrm{x}\right]=\mathrm{a}^{|\mathrm{x}|} \operatorname{sgn} \mathrm{x} \quad(\therefore\{\mathrm{y}\}+[\mathrm{y}]=\mathrm{y}) \\
& =\left[\begin{array}{cc}
\mathrm{a}^{\mathrm{x}} & \text { for } \mathrm{x}>0 \\
0 & \text { for } \mathrm{x}=0 \\
-\mathrm{a}^{-\mathrm{x}} & \text { for } \mathrm{x}<0
\end{array} \Rightarrow \mathrm{~h}(\mathrm{x}) \text { is an odd function }\right]
\end{aligned}
$$

6. $f^{\prime}(x)=100 x^{99}+\cos x$
for $\quad x \in(0,1)$ and $\left(0, \frac{\pi}{2}\right), \cos x$ and x are both $+v e \Rightarrow \uparrow$
for $\quad \mathrm{x} \in\left(\frac{\pi}{2}, \pi\right), \mathrm{x}>1$ hence $100 \mathrm{x}^{99}$ obviously $\left.>\cos \mathrm{x} \Rightarrow \uparrow\right]$
7. Note that $f(x)$ is continuous at $x=2$ and f is decreasing for $(2,3)$ and increasing for $[-1,2]$. At $\mathrm{x}=2 \mathrm{f}$ has a maxima hence (A) is not correct.]

8. Graph of $\mathrm{y}=\mathrm{f}(\mathrm{x}) \Rightarrow(\mathrm{A})$ and (C)

9. If f and g are inverse then $(\mathrm{fog})(\mathrm{x})=\mathrm{x}$
$\mathrm{f}^{\prime}[\mathrm{g}(\mathrm{x})] \mathrm{g}^{\prime}(\mathrm{x})=1$
if f is increasing $\quad \Rightarrow \quad f^{\prime}>0 \Rightarrow \quad$ sign of g^{\prime} is also + ve $\Rightarrow \quad$ (A) is correct
If f is decreasing $\Rightarrow f^{\prime}<0 \Rightarrow \quad$ sign of g ' is $-v e \quad \Rightarrow \quad$ (B) is false
since f has an inverse $\quad \Rightarrow \quad \mathrm{f}$ is bijective $\Rightarrow \quad \mathrm{f}$ is injective $\quad \Rightarrow \quad(\mathrm{C})$ is correct
inverse of a bijective mapping is bijective
$\Rightarrow \quad \mathrm{g}$ is also bijective $\quad \Rightarrow \quad \mathrm{g}$ is onto $\quad \Rightarrow \quad(\mathrm{D})$ is correct]
10. $\quad f(\mathrm{x})=\ln (1-\ln \mathrm{x})$
domain ($0, \mathrm{e}$)

$$
\begin{aligned}
& f^{\prime}(\mathrm{x})=-\frac{1}{(1-\ln \mathrm{x})} \cdot \frac{1}{\mathrm{x}}<0 \Rightarrow \text { decreasing } \forall \mathrm{x} \text { in its domain } \Rightarrow(\mathrm{A}) \&(\mathrm{~B}) \text { are incorrect } \\
& \mathrm{f}^{\prime}(1)=-1 \Rightarrow \quad \text { (C) is also incorrect }
\end{aligned}
$$

also

$$
\mathrm{f}(1)=0 ; \quad \operatorname{Lim}_{\mathrm{x} \rightarrow \mathrm{e}^{-1}} \mathrm{f}(\mathrm{x}) \rightarrow-\infty ; \operatorname{Lim}_{\mathrm{x} \rightarrow 0^{+}} \mathrm{f}(\mathrm{x}) \rightarrow \infty
$$

$$
\begin{aligned}
& \mathrm{f}^{\prime \prime}(\mathrm{x})=\frac{-\ln \mathrm{x}}{\mathrm{x}^{2}(1-\ln \mathrm{x})^{2}} \\
& \mathrm{f}^{\prime \prime}(1)=0 \text { which is a point of inflection }
\end{aligned}
$$

graph is as shown
11. fis obvious continuous $\forall x \in R$ and not derivable at -1 and 1 $f^{\prime}(x)$ changes sign 4 times at $-1,0,1,2$ local maxima at 1 and - 1
local minima at $\mathrm{x}=0$ and 2]

12. Domain is $x \in R$

Also $\mathrm{f}(\mathrm{x})=\left[\cos \left(\tan ^{-1}(\sin \theta)\right)\right]^{2}$ where $\cot \theta=\mathrm{x}$

$$
\begin{aligned}
& =\left[\cos \left(\tan ^{-1}\left(\frac{1}{\sqrt{1+\mathrm{x}^{2}}}\right)\right)\right]^{2}=(\cos \phi)^{2} \text { where } \tan \phi=\frac{1}{\sqrt{1+\mathrm{x}^{2}}} \\
& =\left(\frac{\sqrt{1+\mathrm{x}^{2}}}{\sqrt{2+\mathrm{x}^{2}}}\right)^{2} \\
\mathrm{~g}(\mathrm{x}) & =\frac{1+\mathrm{x}^{2}}{2+\mathrm{x}^{2}}=1-\frac{1}{2+\mathrm{x}^{2}}
\end{aligned}
$$

range is $\left[\frac{1}{2}, 1\right) ; \mathrm{f}^{\prime}(\mathrm{x})=\frac{2 \mathrm{x}}{\left(2+\mathrm{x}^{2}\right)^{2}}$
hence $\mathrm{f}^{\prime}(0)=0$
also $\operatorname{Lim}_{x \rightarrow \infty} f(x)=1$

hence (B), (C), (D)]
13. Let the tangent line be $y=a x+b$

The equation for its intersection with the upper parabola is

$$
\begin{aligned}
& x^{2}+1=a x+b \\
& x^{2}-a x+(1-b)=0
\end{aligned}
$$

This has a double root when $\mathrm{a}^{2}-4(1-\mathrm{b})=0 \quad$ or $\quad a^{2}+4 b=4$
For the lower parabola

$$
\begin{aligned}
& a x+b=-x^{2} \\
& x^{2}+a x+b=0
\end{aligned}
$$

This has a double root when $\mathrm{a}^{2}-4 \mathrm{~b}=0$
subtract these two equations to get $8 b=4 \quad$ or $\quad b=1 / 4$
add them to get $\quad 2 \mathrm{a}^{2}=4 \quad$ or $\quad \mathrm{a}= \pm \sqrt{2}$
The tangent lines are $y=\sqrt{2} x+\frac{1}{2} \quad$ and $\quad y=-\sqrt{2} x+\frac{1}{2}$
14. $f(x)=\int_{0}^{\pi} \cos t \cos (x-t) d t$

$$
\begin{equation*}
=\int_{0}^{\pi}-\cos t \cdot \cos (x-\pi+\mathrm{t}) \mathrm{dt} \tag{1}
\end{equation*}
$$

$f(x)=\int_{0}^{\pi} \cos t \cdot \cos (x+t) d t$
(1) $+(2)$ gives

$$
2 f(x)=\int_{0}^{\pi} \cos t(2 \cos x \cdot \cos t) d t
$$

$\therefore \quad f(x)=\cos x \int_{0}^{\pi} \cos ^{2} t d t=2 \cos x \int_{0}^{\pi / 2} \cos ^{2} t d t$
$f(x)=\frac{\pi \cos x}{2}$ Now verify. Only (A) \& (B) are correct.
15. (A) $f(x)=x-\tan ^{-1} x$
$f^{\prime}(x)=1-\frac{1}{1+x^{2}}=\frac{x^{2}}{1+x^{2}}>0 \quad \Rightarrow \quad f$ is increasing in $(0,1)$
$\mathrm{f}(\mathrm{x})>\mathrm{f}(0)$ but $\mathrm{f}(0)=0$
$\mathrm{f}(\mathrm{x})>0 \quad \Rightarrow \quad \mathrm{x}>\tan ^{-1} \mathrm{x}$ in $(0,1)$
(B) $f(x)=\cos x-1+\frac{x^{2}}{2}$

$$
f^{\prime}(x)=-\sin x+x=x-\sin x>0 \text { in }(0,1) \Rightarrow \quad(B) \text { is not correct }
$$

(C) $f(x)=1+x \ln \left(x+\sqrt{1+\mathrm{x}^{2}}\right)-\sqrt{1+\mathrm{x}^{2}}$

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{x}\left(\frac{1+\frac{1}{2} \cdot \frac{2 \mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}}{\mathrm{x}+\sqrt{1+\mathrm{x}^{2}}}\right)+\ln \left(\mathrm{x}+\sqrt{1+\mathrm{x}^{2}}\right)-\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}} \\
& \Rightarrow \quad=\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}+\ln \left(\mathrm{x}+\sqrt{1+\mathrm{x}^{2}}\right)-\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}>0 \forall \mathrm{x} \in \mathrm{R} \\
& \Rightarrow \quad \text { (C) is true }
\end{aligned}
$$

(D) $\mathrm{f}(\mathrm{x})=\mathrm{x}-\frac{\mathrm{x}^{2}}{2}-\ln (1+\mathrm{x})$

$$
f^{\prime}(x)=(1-x)-\frac{1}{1+x}=\frac{\left(1-x^{2}\right)-1}{1+x}=-\frac{x^{2}}{1+x}<0 \Rightarrow \quad \text { (D) is correct }
$$

hence $\mathrm{f}(\mathrm{x})$ is decreasing in $(0,1)$
$\therefore \quad \mathrm{f}(\mathrm{x})<\mathrm{f}(0)$

$$
\left.\mathrm{f}(\mathrm{x})<0 \quad \Rightarrow \quad \mathrm{x}-\frac{\mathrm{x}^{2}}{2}<\ln (1+\mathrm{x})\right]
$$

16. $\mathrm{f}^{\prime}(\mathrm{x})=\frac{2-\mathrm{x}}{\mathrm{x}^{3}}$ and $\mathrm{f}^{\prime \prime}(\mathrm{x})=\frac{\mathrm{x}-3}{\mathrm{x}^{4}}$. Now interpret

17. (A) $f(x)$ has no relative minimum on $(-3,4)$
(B) $\quad \mathrm{f}(\mathrm{x})$ is continuous function on $[-3,4]$
$\Rightarrow \quad f(x)$ has min. and max. on $[-3,4]$ by IVT

(C) $\quad \mathrm{f}^{\prime \prime}(\mathrm{x})>0 \quad \Rightarrow \quad \mathrm{f}(\mathrm{x})$ is concave upwards on [-3, 4]
(D) $\quad \mathrm{f}(3)=\mathrm{f}(4)$

By Rolle's theorem
$\exists \mathrm{c} \in(3,4)$, where $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\Rightarrow \quad \exists$ critical point on [-3, 4]
18. (A) False, e.g. $f(x)=\sin \sqrt{x}$
(B) True, from IVT
(C) True as $\operatorname{Lim}_{x \rightarrow \infty} \sin ^{-1}\left(1+\frac{1}{x}\right)=\sin ^{-1}$ (a quantity greater than one) \Rightarrow not defined
(D) True, as the line passes through the centre of the circle.
19.
(A) Let $\ell=\operatorname{Lim}_{x \rightarrow 0} \frac{x \int_{0}^{x} e^{t^{2}} d t}{-\left(e^{x}-x-1\right)}\left(\frac{0}{0}\right)=\operatorname{Lim}_{x \rightarrow 0} \frac{x \int_{0}^{x} e^{t^{2}} d t}{-x^{2}\left(\frac{e^{x}-x-1}{x^{2}}\right)}=-2 \operatorname{Lim}_{x \rightarrow 0} \frac{\int_{0}^{x} e^{t^{2}} d t}{x}\left(\frac{0}{0}\right)=-2 \operatorname{Lim}_{x \rightarrow 0} \frac{e^{x^{2}}}{1}=-2$
(B) $14 x^{2}-7 x y+y^{2}=2$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{28 x-7 y}{7 x-2 y} \tag{1}
\end{equation*}
$$

if $x=1$ then $14-7 y+y^{2}=2 \quad \Rightarrow \quad y^{2}-7 y+12=0 \quad \Rightarrow \quad y=3$ or 4
hence $L(1,3)$ and $M(1,4)$
slope of tangent at $\mathrm{L}=\frac{28-21}{7-6}=7$; slope of tangent at $\mathrm{M}=\frac{28-28}{7-8}=0$
equation of tangent at L and M are

$$
\begin{array}{lll}
& y-3=7(x-1) & \Rightarrow \\
\text { and } & y-4=7(x-1) & \Rightarrow \\
& y=4
\end{array}
$$

hence $\mathrm{N}=\left(\frac{8}{7}, 4\right) \Rightarrow$
(C)
(C) If n is odd then graph of $\mathrm{f}(\mathrm{x})$ is
a_{3} is the only point where
$f(x)$ has its minimum value

If n is even then graph of $\mathrm{f}(\mathrm{x})$ is

From a_{2} to a_{3} at all values of $x, f(x)$ is minimum.

(D) $\quad 2 l \mathrm{c}+\mathrm{m}=\left(l \mathrm{~b}^{2}+\mathrm{mb}\right) \frac{-\left(l \mathrm{a}^{2}+\mathrm{my}\right)}{\mathrm{b}-\mathrm{a}}=l\left(\mathrm{~b}^{2}-\mathrm{a}^{2}\right)+\mathrm{m}(\mathrm{b}-\mathrm{a})=l(\mathrm{~b}+\mathrm{a})+\mathrm{m} ; \mathrm{c}=\frac{\mathrm{a}+\mathrm{b}}{2}$
20. We have $f^{\prime}(x)=5 \sin ^{4} x \cos x-5 \cos ^{4} x \sin x=5 \sin x \cos x(\sin x-\cos x)(1+\sin x \cos x)$

$$
\therefore \quad \mathrm{f}^{\prime}(\mathrm{x})=0 \text { at } \mathrm{x}=\frac{\pi}{4} . \quad \text { Also } \mathrm{f}^{\prime}(0)=\mathrm{f}^{\prime}\left(\frac{\pi}{2}\right)=0
$$

Hence \exists some $\mathrm{c} \in\left(0, \frac{\pi}{2}\right)$ for which $\mathrm{f}^{\prime}(\mathrm{c})=0 \quad$ (By Rolle's Theorem) $\quad \Rightarrow \quad$ (C) is correct.

Also in $\left(0, \frac{\pi}{4}\right) \mathrm{f}$ is decreasing and in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \mathrm{f}$ is increasing \Rightarrow minimum at $\mathrm{x}=\frac{\pi}{4}$
As $\quad \mathrm{f}(0)=\mathrm{f}\left(\frac{\pi}{2}\right)=0 \quad \Rightarrow \quad 2$ roots $\Rightarrow \quad$ (D) is correct.]
21. $\mathrm{f}(\mathrm{x})=\tan ^{-1}(\mathrm{x})$ is defined on R and is strictly increasing but do not have its range R]
22. $\quad \mathrm{f}(0)=1 ; \mathrm{f}(2)=2$
$\mathrm{f}\left(1^{-}\right)=\mathrm{f}\left(1^{+}\right)=\mathrm{f}(1)=2 \mathrm{l}$
23. $\mathrm{f}(\mathrm{x})=\ln (2+\mathrm{x})-\frac{2 \mathrm{x}+2}{\mathrm{x}+3}$ is continuous in $(-2, \infty)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x+2}-\frac{4}{(x+3)^{2}}=\frac{(x+3)^{2}-4(x+2)}{(x+2)(x+3)^{2}} \\
& =\frac{x^{2}+2 x+1}{(x+2)(x+3)^{2}}=\frac{(x+1)^{2}}{(x+2)(x+3)^{2}}>0 \quad\left(f{ }^{\prime}(x)=0 \text { at } x=-1\right)
\end{aligned}
$$

$\Rightarrow \quad f$ is increasing in $(-2, \infty)$
also $\operatorname{Lim}_{x \rightarrow-2^{+}} \mathrm{f}(\mathrm{x}) \rightarrow-\infty$ and $\operatorname{Lim}_{\mathrm{x} \rightarrow \infty} \mathrm{f}(\mathrm{x}) \rightarrow \infty \Rightarrow \quad$ unique root]
24. Let $f(x)=0$ has two roots say $x=r_{1}$ and $x=r_{2}$ where $r_{1}, r_{2} \in[a, b]$
$\Rightarrow \quad \mathrm{f}\left(\mathrm{r}_{1}\right)=\mathrm{f}\left(\mathrm{r}_{2}\right)$
hence \exists there must exist some $c \in\left(r_{1}, r_{2}\right)$ where $f^{\prime}(c)=0$
but $f^{\prime}(x)=x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1$
for $|x| \geq 1, \quad f^{\prime}(x)=\left(x^{6}-x^{5}\right)+\left(x^{4}-x^{3}\right)+\left(x^{2}-x\right)+1>0$
for $|x| \leq 1, \quad f^{\prime}(x)=(1-x)+\left(x^{2}-x^{3}\right)+\left(x^{4}-x^{5}\right)+x^{6}>0$
hence $\mathrm{f}^{\prime}(\mathrm{x})>0$ for all x
$\therefore \quad$ Rolles theorem fails $\Rightarrow \quad \mathrm{f}(\mathrm{x})=0$ can not have two or more roots.]
25. Consider the example of $f(x)=e^{x}$ and $f^{\prime}(x)=e^{x}$ both increasing]

Paragraph for question nos. 26 to 27

(i) We have $f(x)=x 2^{-x}$

So, $\quad f^{\prime}(x)=2^{-x}(1-x \ln 2)$
and $\quad f^{\prime \prime}(x)=2^{-x} \ln 2(x \ln 2-2)$
Clearly, $f(x)$ is increasing in $\left(-\infty, \frac{1}{\ln 2}\right)$ and decreasing in $\left(\frac{1}{\ln 2}, \infty\right)$.

Graph of $f(x)=x 2^{-x}$
(ii)

$$
\in\left(0, \frac{1}{\mathrm{e} \ln 2}\right)
$$

(iii) Given $f(x)=x 2^{-x}$ and $g(x)=\max .\{f(t): x \leq t \leq x+1\}$

As $f(x)$ is increasing in $\left(-\infty, \frac{1}{\ln 2}\right)$, hence maximum value of $g(x)$ occurs at $t=x+1$

$$
\therefore \quad \mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x}+1)=(\mathrm{x}+1) 2^{-(\mathrm{x}+1)}
$$

Let $I=\int_{0}^{\frac{1}{\ln 2}-1} g(x) d x=\int \underbrace{(x+1)}_{\substack{\text { (I.B.P.) }}} \underbrace{2^{-(x+1)}}_{\text {II }} d x$

$$
\left.=-\frac{(\mathrm{x}+1) 2^{-(\mathrm{x}+1)}}{\ln 2}\right]_{0}^{\frac{1}{\ln 2}-1}+\frac{1}{\ln 2} \int_{0}^{\frac{1}{\ln 2}-1} 2^{-(\mathrm{x}+1)} \mathrm{dx}
$$

$$
\left.\left.=-\frac{(\mathrm{x}+1)}{\ln 2} 2^{-(\mathrm{x}+1)}\right]_{0}^{\frac{1}{\ln 2}-1}-\frac{1}{\ln ^{2} 2} 2^{-(\mathrm{x}+1)}\right]_{0}^{\frac{1}{\ln 2}-1}
$$

$$
=-\frac{1}{\ln 2}\left[\frac{1}{\ln 2} \frac{1}{\mathrm{e}}-\frac{1}{2}\right]-\frac{1}{\ln ^{2} 2}\left[\frac{1}{\mathrm{e}}-\frac{1}{2}\right]=-\frac{1}{\mathrm{e} \ln ^{2} 2}+\frac{1}{2 \ln 2}-\frac{1}{\mathrm{e} \ln ^{2} 2}+\frac{1}{2 \ln ^{2} 2}
$$

$$
=\frac{1}{2 \ln ^{2} 2}+\frac{1}{2 \ln 2}-\frac{2}{\mathrm{e} \ln ^{2} 2} \text { Ans.] }
$$

Paragraph for question nos. 29 to 31

(1) $\operatorname{Lim}_{x \rightarrow 0^{+}} x \ln \left(1+\frac{1}{x}\right)=\operatorname{Lim}_{x \rightarrow 0^{+}} \frac{\ln \left(\frac{x+1}{x}\right)}{\frac{1}{x}}\left(\frac{\infty}{\infty}\right)$

Using L'Hospital's Rule
$l=\operatorname{Lim}_{x \rightarrow 0}-\left(\frac{1}{x+1}-\frac{1}{x}\right) x^{2}=\operatorname{Lim}_{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x+1}\right) \cdot x^{2}=\operatorname{Lim}_{x \rightarrow 0} \frac{1}{x(x+1)} \cdot x^{2}=\operatorname{Lim}_{x \rightarrow 0} \frac{x}{(x+1)}=0$ Ans.
(2) $\operatorname{Lim}_{x \rightarrow 0} f(x)=1$ (can be verified)
$\operatorname{Lim}_{x \rightarrow \infty} f(x)=e$
Also $\quad \mathrm{f}$ is increasing for all $\mathrm{x}>0 \Rightarrow$ (D) (can be verified)

(3) $\quad l=\left(\prod_{\mathrm{k}=1}^{\mathrm{n}}\left(1+\frac{\mathrm{n}}{\mathrm{k}}\right)^{\mathrm{k} / \mathrm{n}}\right)^{1 / \mathrm{n}} \quad\left\{\right.$ given $\mathrm{f}(\mathrm{x})=(1+1 / \mathrm{x})^{\mathrm{x}}$ and $\left.\mathrm{f}(\mathrm{k} / \mathrm{n})=\left(1+\frac{\mathrm{n}}{\mathrm{k}}\right)^{\mathrm{k} / \mathrm{n}} \quad\right\}$
taking log,

$$
\begin{aligned}
\ln l & =\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \cdot \sum_{\mathrm{k}=1}^{\mathrm{n}} \ln \left(1+\frac{\mathrm{n}}{\mathrm{k}}\right)^{\mathrm{k} / \mathrm{n}}=\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \cdot \sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\mathrm{k}}{\mathrm{n}} \ln \left(1+\frac{1}{\mathrm{k} / \mathrm{n}}\right) \mathrm{dx} \\
& =\int_{0}^{1} \underbrace{\mathrm{x}}_{\mathrm{II}} \underbrace{\ln \left(1+\frac{1}{\mathrm{x}}\right)}_{\mathrm{I}} \mathrm{dx}=\ln \left(1+\frac{1}{\mathrm{x}}\right) \cdot \frac{\mathrm{x}^{2}}{2}]_{0}^{1}+\int_{0}^{1}\left(\frac{1}{\mathrm{x}}-\frac{1}{\mathrm{x}+1}\right) \cdot \frac{\mathrm{x}^{2}}{2} \mathrm{dx}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{2} \ln 2-0\right)+\frac{1}{2} \int_{0}^{1} \frac{\mathrm{x}+1-1}{\mathrm{x}+1} \mathrm{dx}=\frac{1}{2} \ln 2+\frac{1}{2}[\mathrm{x}-\ln (\mathrm{x}+1)]_{0}^{1} \\
& =\frac{1}{2} \ln 2+\frac{1}{2}[(1-\ln 2)-0]=\frac{1}{2} \\
& l=\sqrt{\mathrm{e}}
\end{aligned}
$$

Paragraph for question nos. 32 to 34

$y=\frac{x^{2}}{x^{2}-1} ;$ not defined at $x= \pm 1$

$$
=1+\frac{1}{x^{2}-1} ; \quad y^{\prime}=-\frac{2 x}{\left(x^{2}-1\right)^{2}}
$$

$\frac{d y}{d x}=0 \quad \Rightarrow \quad x=0$ (point of maxima)
as $\quad \mathrm{x} \rightarrow 1^{+}, \mathrm{y} \rightarrow \infty \quad ; \quad \mathrm{x} \rightarrow 1^{-}, \mathrm{y} \rightarrow-\infty$
||ly $\mathrm{l} \quad \mathrm{x} \rightarrow-1^{+}, \mathrm{y} \rightarrow-\infty \quad ; \quad \mathrm{x} \rightarrow-1^{-}, \mathrm{y} \rightarrow \infty$
The graph of $y=\frac{x^{2}}{x^{2}-1}$ is as shown verify all alternativels from the graph.

Paragraph for question nos. 35 to 37
(i) $\quad \mathrm{a}=1$
$f(\mathrm{x})=8 \mathrm{x}^{3}+4 \mathrm{x}^{2}+2 \mathrm{bx}+1$
$\mathrm{f}^{\prime}(\mathrm{x})=24 \mathrm{x}^{2}+8 \mathrm{x}+2 \mathrm{~b}=2\left(12 \mathrm{x}^{2}+4 \mathrm{x}+\mathrm{b}\right)$
for increasing function, $\quad f^{\prime}(x) \geq 0 \quad \forall x \in R$

$$
\begin{array}{ll}
\therefore & \mathrm{D} \leq 0 \Rightarrow \\
\Rightarrow & \mathrm{~b} \geq \frac{1}{3} \Rightarrow \\
& 16-48 \mathrm{~b} \leq 0 \\
\text { (C) }
\end{array}
$$

(ii) if $\mathrm{b}=1$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=8 \mathrm{x}^{3}+4 \mathrm{ax}^{2}+2 \mathrm{x}+\mathrm{a} \\
& \mathrm{f}^{\prime}(\mathrm{x})=24 \mathrm{x}^{2}+8 \mathrm{ax}+2 \quad \text { or } \quad 2\left(12 \mathrm{x}^{2}+4 \mathrm{ax}+1\right)
\end{aligned}
$$

for non monotonic $\mathrm{f}^{\prime}(\mathrm{x})=0$ must have distinct roots
hence

$$
\mathrm{D}>0 \text { i.e. }
$$

$$
16 a^{2}-48>0 \Rightarrow \quad a^{2}>3
$$

$\therefore \quad a>\sqrt{3}$ or $a<-\sqrt{3}$
$\therefore \quad a \in 2,3,4, \ldots \ldots$.
sum $=5050-1=5049$ Ans.
(iii) If x_{1}, x_{2} and x_{3} are the roots then $\log _{2} x_{1}+\log _{2} x_{2}+\log _{2} x_{3}=5$

$$
\begin{array}{ll}
& \log _{2}\left(x_{1} x_{2} x_{3}\right)=5 \\
& \mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}=32 \\
& -\frac{\mathrm{a}}{8}=32 \\
\Rightarrow \quad & \mathrm{a}=-256 \text { Ans. }]
\end{array}
$$

38. (A) R; (B) R, S, T ; (C) Q; (D) Q
(A) $I=\int_{\sqrt{2}-1}^{\sqrt{2}+1} \frac{\left(x^{2}+1\right)^{2}-\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}} d x=\int_{\sqrt{2}-1}^{\sqrt{2}+1}\left(1-\frac{\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}\right) d x=2-\underbrace{\int_{\sqrt{2}-1}^{\sqrt{2}+1} \frac{\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}} d x}_{I_{1}}$
$I_{1}=\int_{1 / a}^{a} \frac{\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}} d x$ where $(a=\sqrt{2}+1) ; \quad$ put $x=\frac{1}{t} \Rightarrow d x=-\frac{1}{t^{2}} d t$
$=\int_{a}^{1 / a} \frac{\frac{1}{t^{2}}-1}{\left(\frac{1}{t^{2}}+1\right)^{2}} \cdot\left(-\frac{1}{t^{2}}\right) d t=-\int_{a}^{1 / a} \frac{\left(1-t^{2}\right) t^{4}}{t^{4}\left(1+t^{2}\right)^{2}} d t=-\int_{a}^{1 / a} \frac{\left(1-t^{2}\right)}{\left(1+t^{2}\right)^{2}} d t=\int_{a}^{1 / a} \frac{t^{2}-1}{\left(t^{2}+1\right)^{2}} d t$
$=-\int_{1 / a}^{a} \frac{t^{2}-1}{\left(t^{2}+1\right)^{2}} d t=-I_{1}$
$\Rightarrow \quad 2 \mathrm{I}_{1}=0 \Rightarrow \quad \mathrm{I}_{1}=0 \Rightarrow \quad 2$ is the answer.]
(B) Domain of $f(x)$ is $(0,1) \cup(1, \infty)$
$\ln \mathrm{f}(\mathrm{x})=1 \quad \Rightarrow \quad \mathrm{f}(\mathrm{x})=\mathrm{e}=\mathrm{constant}$
$f^{\prime}(x)=0$, for all in $(0, \infty)-\{1\}$
(C) Clearly $(1,0)$ is the point of intersection of given curves.

Now, $f^{\prime}(x)=\frac{2^{x}}{x}+2^{x}(\ln 2)(\ln x)$
$\therefore \quad$ Slope of tangent to the curve $\mathrm{f}(\mathrm{x})$ at $(1,0)=\mathrm{m}_{1}=2$
Similarly, $\quad g^{\prime}(x)=\frac{d}{d x}\left(e^{2 x \ln x}-1\right)=x^{2 x}\left(2 x \times \frac{1}{x}+2 \ln x\right)$
$\therefore \quad$ Slope of tangent to the curve $\mathrm{g}(\mathrm{x})$ at $(1,0)=\mathrm{m}_{2}=2$ since $\mathrm{m}_{1}=\mathrm{m}_{2}=2$
$\Rightarrow \quad$ Two curves touch each other, so angle between them is 0 .
Hence $\cos \theta=\cos 0=1$
(D) $3 y^{2} y^{\prime}-3 y-3 x y^{\prime}=0 \Rightarrow \quad y^{\prime}=\frac{y}{y^{2}-x}$
$y^{\prime}=0 \Rightarrow y=0$, no real x.
$y^{\prime}=\infty \Rightarrow y^{2}=x \Rightarrow \quad y^{3}=1, y=1$
The point is $(1,1)$
39. $\quad(\mathrm{A}) \rightarrow \mathrm{R},(\mathrm{B}) \rightarrow \mathrm{Q},(\mathrm{C}) \rightarrow \mathrm{P},(\mathrm{D}) \rightarrow \mathrm{S}$
(A) $\frac{d y}{d x}=\frac{4 t}{3}, \quad$ Tangent is $y-a t^{4}=\frac{4 t}{3}\left(x-a t^{3}\right)$
x -intercept $=\frac{a t^{3}}{4}$
$y-$ intercept $=-\frac{a t^{4}}{3}$
the point of intersection of tangent with the axes are $\left(\frac{a t^{3}}{4}, 0\right)$ and $\left(0,-\frac{a t^{4}}{3}\right)$
$\mathrm{A}\left(0,-\frac{\mathrm{at}^{4}}{3}\right) \quad \mathrm{B}\left(\frac{\mathrm{at}}{4}, 0\right) \quad \mathrm{P}\left(\mathrm{at}^{2}, \mathrm{at}^{4}\right)$
P divids $A B$ externaly in $4: 3$
$\therefore \quad \frac{\mathrm{m}}{\mathrm{n}}=\frac{4}{3} \quad \Rightarrow \quad \mathrm{~m}=4 \& \mathrm{n}=3$
as $\mathrm{m} \& \mathrm{n}$ are coprime to each other
$\therefore \quad \mathrm{m}+\mathrm{n}=7$
(B) $\frac{d x}{d y}=e^{\sin y} \cos y:$ slope of normal $=-1$
equation of normal is $x+y=1$
Area $=\frac{1}{2}$
(C) $y=\frac{1}{x^{2}}: \frac{d y}{d x}=-\frac{1}{x^{3}}:$ slope of tangent $=-2$
$y=e^{2-2 x}: \frac{d y}{d x}=e^{2-2 x} \cdot(-2):$ slope of tangent $=-2$
$\therefore \tan \theta=0$
(D) Length of subtangent $=\left|\frac{y}{y^{\prime}}\right|=\left|\frac{b e^{x / 3}}{b \frac{1}{2} e^{x / 3}}\right|=3$

40
$(\mathrm{A}) \rightarrow(\mathrm{q}),(\mathrm{B}) \rightarrow(\mathrm{r}),(\mathrm{C}) \rightarrow(\mathrm{q}),(\mathrm{D}) \rightarrow(\mathrm{q})$
$y=f(x)+\frac{1}{x}$ so $y>0$
Now $f(y) f\left(f(y)+\frac{1}{y}\right)=1$ also $f(x) f(y)=1$
$\therefore f(x)=f\left(f(y)+\frac{1}{y}\right)=f\left(\frac{1}{f(x)}+\frac{1}{f(x)+1 / x}\right)$
also $f(x)$ is increasing
$\therefore x=\frac{1}{f(x)}+\frac{1}{f(x)+1 / x}$
$\Rightarrow f(x)=\frac{1 \pm \sqrt{5}}{2 x}$
now $f(x)=\frac{1+\sqrt{5}}{2 x}$ is decreasing so discarding it $f(x)=\frac{1-\sqrt{5}}{2 x}$.

