Ellipse

Exercise -2(A)

Q.1 (C)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Equation of tangent at the end point of focal chord is $x = \pm \frac{a}{e}$

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

$$\Rightarrow x = \pm \frac{a^2}{\sqrt{a^2 - b^2}}$$

Q.2 (D)

OB and OC passes from origin then let the equation is $y = m_1 x$ and $y = m_2 x$

$$AB = \frac{\left| m_2 h - k \right|}{\sqrt{1 + m_2^2}}$$

Equation of AB =
$$\frac{y-k}{x-h} = \frac{-1}{m_2}$$

$$OB = y = m_2 x$$

Solving them we get the co – ordinates of B

$$B \equiv \left(\frac{h + m_2 k}{1 + m_2}, \frac{m_2(h + m_2 k)}{1 + m_2^2}\right)$$

Therefore OB =
$$\sqrt{\frac{(h + m_2 k)^2}{(1 + m_2^2)}}$$

Similarly OC =
$$\sqrt{\frac{(h + m_1 k)^2}{(1 + m_2^2)}}$$

$$AC = \frac{\left| m_1 h - k \right|}{\sqrt{1 - m_1^2}}$$

Area of quad OCAB =
$$\frac{1}{2} \left[\frac{(m_1 h - k)(m_1 h + k)}{(1 + m_1^2)} + \frac{(m_2 h - k)(m_2 h + k)}{(1 + m_2^2)} \right]$$

$$2c = \frac{1}{2} \left[\frac{m_1^2 h k + m_1 h^2 - m_1 k^2 - k h}{(1 + m_1^2)} + \frac{m_2^2 h k + m_2 h^2 - m_2 h^2 - h k}{(1 + m_2^2)} \right]$$

= Hyperbola

Q.3 (B)

 $P = (a \cos \theta, b \sin \theta) \& Q = (-a \sin \theta, b \cos \theta)$

Let the mid-point of PQ is R (h, k), then

$$h = a \cos \theta - a \sin \theta \Rightarrow \frac{h}{a} = \cos \theta - \sin \theta$$

$$\Rightarrow \frac{h^2}{a^2} = \cos^2 \theta - \sin^2 \theta - 2\cos \theta \sin \theta$$

$$\Rightarrow 2\cos\theta\sin\theta = 1 - \frac{h^2}{a^2} \qquad \dots (1)$$

$$k = b \sin \theta + b \cos \theta \Rightarrow \frac{k}{b} = \sin \theta + \cos \theta$$

$$\Rightarrow 2\cos\theta\sin\theta = \frac{k^2}{h^2} - 1 \qquad \dots (2)$$

From (1) and (2),
$$\frac{h^2}{a^2} + \frac{y^2}{b^2} = 2$$

locus is
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$$

Q.4 (A)

Let the equation of tangent be $\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$

Equation of (1) is x = a

Therefore
$$y = b \tan \frac{\theta}{2}$$

Equation of (2) is x = -a

Therefore $y = b \cos \frac{\theta}{2}$

slope of SQ (MSQ) = $\frac{b\cos\frac{\theta}{2}}{-a + ae}$

slope of SQ (MSP) = $\frac{b \tan \frac{\theta}{2}}{a + ae}$

$$MSQ \times MSP = \frac{-b^2}{a^2 - a^2 e^2} = -1 \Rightarrow SP \perp SQ$$

⇒circle described on PQ as diameter will pass through the foci.

Q.5 (B)

$$\frac{x^2}{6} + \frac{y^2}{3} = 1$$

y = mx + c is the equation of tangent substituting the value of y in ellipse.

$$c^2 = a^2 m^2 + b^2$$

$$\Rightarrow$$
c² = 6m² + 3

Q.6 (D)

$$ax^2 + by^2 + 2gx + 2fy + c = 0$$

$$\Rightarrow a \left(x^2 + \frac{2gx}{a} + \frac{g^2}{a^2} \right) + b \left(y^2 + \frac{2fy}{b} + \frac{f^2}{b^2} \right) = -c - \frac{f^2}{b^2} - \frac{g^2}{a^2}$$

$$\Rightarrow$$
e = $\sqrt{1-\frac{a}{b}} = \sqrt{\frac{b-a}{b}}$

Q.7 (C)

Equation of tangent from point (α, β)

$$\frac{x\alpha}{a^2} + \frac{y\beta}{b^2} = 1$$

This touches the circle $x^2 + y^2 = c^2$

Therefore perpendicular distance from center = radius of circle.

$$\frac{\left|-1\right|}{\sqrt{\frac{\alpha^2}{a^4} + \frac{\beta^2}{b^4}}} = c$$

$$\Rightarrow \frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{c^2}$$

Q.8 (A)

Area of $\triangle APA' = \frac{1}{2} \times 2a \times b \sin \theta$

 $= ab \sin \theta$

Area will be maximum when

$$\sin \theta = 1$$

$$\therefore$$
 Max. Area = ab.

Q.9 (**B**)

Equation of normal

$$ax \sec \theta - by \cos ec\theta = a^2 - b^2$$

at y = 0 we get co - ordinates of L

$$x = \frac{(a^2 - b^2)\cos\theta}{a}$$

$$L \equiv \left(\frac{(a^2 - b^2)\cos\theta}{a}, 0\right)$$

at x = 0 we get co – ordinate of M

$$y = -\frac{(a^2 - b^2)\sin\theta}{b}$$

$$M = \left(0, -\frac{(a^2 - b^2)\sin\theta}{b}\right)$$

Therefore $a^2CL^2 + b^2CM^2$

$$= \frac{a^2(a^2 - b^2)\cos^2\theta}{a^2} + \frac{(a^2 - b^2)^2b^2\sin^2\theta}{b^2}$$

$$=(a^2-b^2)^2$$

Q.10 (C)

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

$$y_1 + y_2 = 3$$

Let the two points be $(x_1, y_1) \equiv (a\cos\alpha, b\sin\alpha)$ and $Q(x_2, y_2) \equiv (a\cos\beta, b\sin\beta)$

Then mid – point of PQ is R (h, k) such that

$$h = \frac{a\cos\left(\frac{\alpha+\beta}{2}\right)}{\cos\left(\frac{\alpha-\beta}{2}\right)} \qquad \dots (1)$$

$$k = \frac{a \sin\left(\frac{\alpha + \beta}{2}\right)}{\cos\left(\frac{\alpha - \beta}{2}\right)} \qquad \dots (2)$$

$$As y_1 + y_2 = 3$$

$$\Rightarrow$$
b(sin α + sin β) = 3

$$\Rightarrow \sin \alpha + \sin \beta = 1$$
(3)

Therefore form (1), (2) and (3) we get

$$\frac{h^2}{a^2} + \frac{k^2}{b^2} = \frac{1}{\cos^2\left(\frac{\alpha - \beta}{2}\right)}$$

$$\frac{x^2}{25} + \frac{y^2}{9} = \frac{1}{\cos^2\left(\frac{\alpha - \beta}{2}\right)}$$

From (3)

$$2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right) = 1$$

$$\Rightarrow 2 \left\lceil \frac{k \cos\left(\frac{\alpha - \beta}{2}\right)}{a} \right\rceil \cos\left(\frac{\alpha - \beta}{2}\right) = 1$$

$$\Rightarrow \cos^2\left(\frac{\alpha-\beta}{2}\right) = \frac{0}{2k} = \frac{3}{2y}$$

: locus is
$$\frac{x^2}{25} + \frac{y^2}{9} = \frac{1}{\frac{9}{(2y)^2}}$$

$$\Rightarrow 9x^2 + 25y^2 = 150y$$

Q.11 (B)

$$4\tan\frac{B}{2}\cdot\tan\frac{C}{2}=1$$

$$\Rightarrow \sqrt{\frac{s(s-b)}{(s-a)(s-c)} \cdot \frac{s(s-c)}{(s-a)(s-b)}} = 4$$

$$\Rightarrow \frac{s}{s-a} = 4$$

$$\Rightarrow$$
s = 45 – 4a

$$\Rightarrow 3s = 4a$$

$$\Rightarrow 3a + 3b + 3c = 8a$$

$$3b + 3c = 5a$$

$$3\left(\sqrt{(x-2)^2+y^2}\right. + \sqrt{(x-3)^2+y^2}\left.\right) = 5\left(\sqrt{(c-2)^2+(a-0)^2}\right)$$

$$\sqrt{(x-2)^2 + y^2} + \sqrt{(x-8)^2 + y^2} = 10$$

$$\Rightarrow \sqrt{(x-2)^2 + y^2} = 10 - \sqrt{(x-8)^2 + y^2}$$

$$\Rightarrow 40 - 3x = 5\sqrt{(x - 8)^2 + y^2}$$

$$\Rightarrow \frac{\left(x-5\right)^2}{25} + \frac{y^2}{16} = 1$$

Q.12 (A)

Locus of point of intersection of tangents is given by

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \sec^2\left(\frac{\alpha - \beta}{2}\right)$$

Hence $\alpha - \beta = 60^{\circ}$

$$\sec^2 30^{\circ} = 3$$

$$\therefore \text{Locus is } \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{4}{3}$$

Q.13 (D)

Let the equation be $y = mx + \sqrt{a^2m^2 + b^2}$

m = 1 (equal angles)

$$y = x + \sqrt{a^2 + b^2}$$

Perpendicular from origin.

$$=\sqrt{\frac{a^2+b^2}{2}}$$

Q.15 (A)

$$4(x-1)^2 + 9(y-2)^2 = 36$$

$$\frac{(x-1)^2}{9} + \frac{(y-2)^2}{4} = 1$$

The circle $(x-1)^2 + (y-2)^2 = 1$ is a point circle at center of ellipse.

So the length of common chord is 0.

Q.16 (B)

$$2ae = 8 \& \frac{2a}{e} = 25$$

$$\Rightarrow 4a^2 = 200 \text{ or } 2a = 10\sqrt{2}$$

Q.17 (C)

Let the co- ordinates P be (h, k)

Equation of auxiliary circle is $x^2 + y^2 = 25$

Therefore co – ordinates of $Q \equiv \left(\sqrt{25-k^2}, k\right)$

Equation of normal from P

$$y-k = \frac{25k}{9h} (x-h)$$
(1)

Equation of normal from Q

$$y = \frac{k}{\sqrt{25 - y^2}} x$$
(2)

Solving (1) and (2) we get

$$h^2 + k^2 = 64$$

locus is
$$x^2 + y^2 = 64$$

Q.18 (C)

Alternately:

Product of perpendiculars from foci on any tangent is b².

Hence
$$\left| \frac{1 - 1 - 5}{\sqrt{2}} \right| \left| \frac{2 - 1 - 5}{\sqrt{2}} \right| = b^2 \implies b^2 = 10$$

Distance between the foci = 2ae = 1

Now
$$a^2 = b^2 + a^2 e^2 = 10 + \frac{1}{4} = \frac{41}{4}$$

Also center will be midpoint of foci i.e. $\left(\frac{3}{2}, -1\right)$

Hence equation of ellipse is $\frac{4\left(x-\frac{3}{2}\right)^2}{41} + \frac{\left(y+1\right)^2}{10} = 1.$

Now find point of contact with x + y = 5.

Q.19 (C)

As PQRS is a parallelogram as well as a cyclic quadrilateral, hence it must be a rectangle, which implies $x^2 + y^2 = 25$ must be director circle of the

ellipse,
$$\frac{x^2}{16} + \frac{y^2}{b^2} = 1$$
.

$$16 + b^2 = 25$$
 or $b^2 = 9$

$$\Rightarrow e = \sqrt{\frac{16 - 9}{16}} = \frac{\sqrt{7}}{4}$$

Q.20 (D)

Chord of contact of the tangents drawn from (8, 27) to $\frac{x^2}{4} + \frac{y^2}{9} = 1$ will be,

$$\frac{8x}{4} + \frac{27y}{9} = 1$$
 or $2x + 3y = 1$.

Homogenizing the equation of the ellipse using this gives

$$\frac{x^2}{4} + \frac{y^2}{9} = (2x + 3y)^2$$
 or $135x^2 + 432xy + 320y^2 = 0$

Angle between this pair of lines will be given by

$$\tan \theta = \frac{2\sqrt{216^2 - 135 \times 320}}{135 + 320} = \frac{48\sqrt{6}}{455} \text{ or } \theta = \tan^{-1} \frac{48\sqrt{6}}{455}.$$

Q.21 (B)

Let the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then

the circle on major axis as diameter will be $x^2 + y^2 = a^2$ and

the circle on minor axis as diameter will be $x^2 + y^2 = b^2$ Any tangent with slope m to former circle will be $y = mx + a\sqrt{1 + m^2}$ or $y - mx = a\sqrt{1 + m^2}$ and a perpendicular tangent to the later circle will be

$$y = -\frac{1}{m}x + b\sqrt{1 + \frac{1}{m^2}}$$
 or $x + my = b\sqrt{1 + m^2}$

From the two equations we get $m = \frac{ay - bx}{by + ax}$.

Substituting this value of m in former equation of tangent gives

$$x(by+ax)+y(ay-bx) = a\sqrt{(by+ax)^2+(ay-bx)^2}$$

or $x^2+y^2=a^2+b^2$.

Hence the required locus is the director circle.

Q.22 (A)

For circle on PF as diameter

Center:
$$\left(\frac{a\cos\theta + ae}{2}, \frac{b\sin\theta}{2}\right)$$
 & radius = $\frac{a - ae\cos\theta}{2}$

For the auxiliary circle

Center : (0, 0) & radius = a

Distance between the centers =

$$\sqrt{\left(\frac{a\cos\theta + ae}{2}\right)^2 + \left(\frac{b\sin\theta}{2}\right)^2} = \frac{1}{2}\sqrt{a^2\cos^2\theta + a^2e^2 + b^2\sin^2\theta + 2a^2e\cos\theta}$$

$$= \frac{1}{2}\sqrt{a^2e^2\cos^2\theta + a^2 + 2a^2e\cos\theta}$$

$$= \frac{a + ae\cos\theta}{2} = \text{difference of radii.}$$

(Note: Circle on any focal radius as diameter touches the auxiliary circle)

Q.23 (A)

Let the midpoint of any chord of $\frac{x^2}{10} + \frac{y^2}{6} = 1$ be (h, k)

then equation of chord will be $\frac{hx}{10} + \frac{ky}{6} = \frac{h^2}{10} + \frac{k^2}{6}$ $\{T = S_1\}$

Comparing this with
$$2x - y + 3 = 0$$
 gives $\frac{h}{20} = -\frac{k}{6} = -\frac{\frac{h^2}{10} + \frac{k^2}{6}}{3}$ or $h = -\frac{30}{23}, k = \frac{9}{23}$.

Q.24 (D)

Any tangent to given ellipse will be $\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$.

Homogenizing the equation of the auxiliary circle using the equation of tangents gives

$$x^{2} + y^{2} = a^{2} \left(\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} \right)^{2}$$

$$\Rightarrow \left(b^{2} \sin^{2} \theta \right) x^{2} - \left(2ab \sin \theta \cos \theta \right) xy + \left(b^{2} - a^{2} \sin^{2} \theta \right) y^{2} = 0$$

Now as the chord cut off by the auxiliary circle from the tangent subtends a right angle at the origin hence $b^2 \sin^2 \theta + b^2 - a^2 \sin^2 \theta = 0$ (coeff. of $x^2 + \text{coeff.}$ of $y^2 = 0$)

$$\Rightarrow \frac{b^2}{a^2} = \frac{\sin^2 \theta}{1 + \sin^2 \theta}$$
$$\Rightarrow e = \sqrt{1 - \frac{\sin^2 \theta}{1 + \sin^2 \theta}} = \sqrt{\frac{1}{1 + \sin^2 \theta}}.$$

Q.25 (B)

Let coordinates of P be $(3\cos\theta, 2\sin\theta)$, then

$$PF_1 = 3 - \sqrt{5}\cos\theta \& PF_2 = 3 + \sqrt{5}\cos\theta$$

Hence
$$(PF_1 - PF_2)^2 = 20\cos^2\theta$$

Now tangent at P will be $2x \cos \theta + 3y \sin \theta = 6$

Distance of this line from the origin =
$$\frac{6}{\sqrt{4\cos^2\theta + 9\sin^2\theta}} = \frac{6}{\sqrt{9 - 5\cos^2\theta}}$$

But given distance = 3.

$$\Rightarrow \frac{6}{\sqrt{9-5\cos^2\theta}} = 3 \Rightarrow \cos^2\theta = 1$$
. Hence $(PF_1 - PF_2)^2 = 20$.

Q.26 (A)

By linearly combining equations of any two curves we can get equation of curve passing through their points of intersection. Hence required circle can be obtained by

$$\left(\frac{x^2}{4} + \frac{y^2}{2}\right) + \left(\frac{x^2}{2} + \frac{y^2}{4}\right) = 2$$
 i.e. $3x^2 + 3y^2 = 8$.

Q.27 (C)

Let the midpoint of any chord of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ be (h, k)

then equation of chord will be $\frac{hx}{a^2} + \frac{ky}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2}$ $\{T = S_1\}$

As this chord passes through (0, b) hence $\frac{h^2}{a^2} + \frac{k^2}{b^2} - \frac{k}{b} = 0$.

Required locus is
$$\frac{x^2}{a^2/4} + \frac{\left(y - \frac{b}{2}\right)^2}{b^2/4} = 1.$$

Q.28

Given ellipse is
$$\frac{x^2}{16} + \frac{y^2}{4} = 1$$
, hence tangent at $A\left(\frac{\pi}{4}\right) = \left(2\sqrt{2}, \sqrt{2}\right)$ will be

$$x + 2y = 4\sqrt{2}.$$

Normal at
$$C\left(\frac{3\pi}{4}\right) \equiv \left(-2\sqrt{2}, \sqrt{2}\right)$$
 will be

$$2x + y = -3\sqrt{2}.$$

Solving these together we get the point B as $\left(-\frac{10\sqrt{2}}{3}, \frac{11\sqrt{2}}{3}\right)$

Now solving $2x + y = -3\sqrt{2}$ and $\frac{x^2}{16} + \frac{y^2}{4} = 1$ gives the point D as $\left(-\frac{14\sqrt{2}}{17}, -\frac{23\sqrt{2}}{17} \right)$

Area of
$$\triangle ABD = \frac{1}{2} \begin{vmatrix} 1 & 2\sqrt{2} & \sqrt{2} \\ 1 & -\frac{10\sqrt{2}}{3} & \frac{11\sqrt{2}}{3} \\ 1 & -\frac{14\sqrt{2}}{17} & -\frac{23\sqrt{2}}{17} \end{vmatrix} = \frac{1024}{51}$$

Q.29 (A)

Tangent to $\frac{x^2}{4} + y^2 = 1$ at any point will be $\frac{x}{4} \cos \theta + y \sin \theta = 1$

Chord of contact of tangents drawn to $\frac{x^2}{20} + \frac{y^2}{5} = 1$ from any point P(h, k) will be $\frac{hx}{20} + \frac{ky}{5} = 1$

Comparing the two equations gives $h = 5\cos\theta, k = 5\sin\theta$.

Hence P lies on $x^2 + y^2 = 25$ i.e. the director circle of the later ellipse.

Angle between the tangents $=\frac{\pi}{2}$.

Q.30 (B)

As tangents drawn from $P(\alpha,\beta)$ are at right angles hence P lies on the director circle i.e.

$$x^2 + y^2 = a^2 + b^2$$
, hence $\alpha^2 + \beta^2 = a^2 + b^2$.

Also normals will be mutually perpendicular.

Let the point of intersection of normals be N(h, k).

Now PQNR will be a cyclic quadrilateral with circle circumscribing it will be having PN as diameter.

As this circle will be touching $x^2 + y^2 = a^2 + b^2$, hence (h,

k) must lie on the line joining the origin to (α, β) .

$$\Rightarrow \beta h = \alpha k$$

Required locus is $\beta x - \alpha y = 0$.

Q.31 (**B**)

Let P be $(a\cos\theta, b\sin\theta)$.

Also $F_1 \& F_2$ are (ae,0) & (-ae,0)

$$F_1F_2 = 2ae$$
, $PF_1 = a(1 - e\cos\theta) & PF_2 = a(1 + e\cos\theta)$

Now in-center will be

$$x = \frac{a(1 + e\cos\theta) \times ae + a(1 - e\cos\theta) \times (-ae) + 2ae \times a\cos\theta}{2a + 2ae} &$$

$$y = \frac{a(1 + e\cos\theta) \times 0 + a(1 - e\cos\theta) \times o + 2ae \times b\sin\theta}{2a + 2ae}$$

$$\Rightarrow$$
 x = ae cos θ , y = $\frac{be \sin \theta}{1+e}$ or cos $\theta = \frac{x}{ae}$, sin $\theta = \frac{y(1+e)}{be}$

$$\Rightarrow \frac{x^2}{a^2 e^2} + \frac{y^2 (1+e)^2}{b^2 e^2} = 1.$$

Q.32 (A)

Equation of normal in slope form : $y = mx \pm \frac{\left(a^2 - b^2\right)m}{\sqrt{a^2 + m^2b^2}}$.

For the given data, normal of slope 1: $y = x \pm \frac{2\sqrt{6}}{3}$

Now coordinates of P:
$$\left(\mp \frac{2\sqrt{6}}{3}, 0\right)$$
 and coordinates of Q: $\left(0, \pm \frac{2\sqrt{6}}{3}\right)$

Also coordinates of C:(0,0)

Now area of $\triangle CPQ = \frac{4}{3}$.

Q.33 (B)

Equation of PQ:
$$\frac{x}{5}\cos\frac{\alpha+\beta}{2} + \frac{y}{4}\sin\frac{\alpha+\beta}{2} = \cos\frac{\alpha-\beta}{2}$$

Equation of any tangent to
$$\frac{\left(x - \frac{5}{2}\right)^{2}}{25/4} + \frac{y^{2}}{16} = 1 : \frac{x - 5/2}{5/2} \cos \theta + \frac{y}{4} \sin \theta = 1$$

Comparing the two equations gives

$$\frac{\cos\frac{\alpha+\beta}{2}}{\cos\frac{\alpha-\beta}{2}} = \frac{2\cos\theta}{1+\cos\theta} & \frac{\sin\frac{\alpha+\beta}{2}}{\cos\frac{\alpha-\beta}{2}} = \frac{\sin\theta}{1+\cos\theta}$$

$$\Rightarrow \sec \theta = \frac{2\cos\frac{\alpha - \beta}{2} - \cos\frac{\alpha + \beta}{2}}{\cos\frac{\alpha + \beta}{2}} \& \tan \theta = \frac{2\sin\frac{\alpha + \beta}{2}}{\cos\frac{\alpha + \beta}{2}}$$

$$\Rightarrow \left(\frac{2\cos\frac{\alpha-\beta}{2}-\cos\frac{\alpha+\beta}{2}}{\cos\frac{\alpha+\beta}{2}}\right)^2 - \left(\frac{2\sin\frac{\alpha+\beta}{2}}{\cos\frac{\alpha+\beta}{2}}\right)^2 = 1$$

$$\Rightarrow 2\cos^2\frac{\alpha-\beta}{2} - 2\cos\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} - 2\sin^2\frac{\alpha+\beta}{2} = 0$$

$$\Rightarrow$$
 cos($\alpha - \beta$) + cos($\alpha + \beta$) = cos α + cos β

$$\Rightarrow 2\cos\alpha\cos\beta = \cos\alpha + \cos\beta$$

$$\Rightarrow$$
 sec α + sec β = 2.

Q.34 (C)

From adjoining figure AB = 5 gives $\frac{25h^2}{9} + \frac{25k^2}{4} = 25$.

Hence the required locus is $\frac{x^2}{9} + \frac{y^2}{4} = 1$

Latus rectum =
$$\frac{2b^2}{a} = \frac{8}{3}$$

Q.35 (A)

Given
$$\ell^2 = \frac{2(2a)^2(2b)^2}{(2a)^2 + (2b)^2}$$
 or $\ell^2 = \frac{8a^2b^2}{a^2 + b^2}$

But length of diameter joining $P(a\cos\theta, b\sin\theta) & Q(-a\cos\theta, -b\sin\theta)$

$$\ell = \sqrt{4a^2 \cos^2 \theta + 4b^2 \sin^2 \theta}$$

$$\Rightarrow a^2 \cos^2 \theta + b^2 \sin^2 \theta = \frac{2a^2b^2}{a^2 + b^2}$$

$$\Rightarrow \cos^2 \theta = \frac{b^2}{a^2 + b^2} \& \sin^2 \theta = \frac{a^2}{a^2 + b^2}$$

Now slope of PQ = $\frac{b \sin \theta}{a \cos \theta}$ = 1.

Q.36

Given
$$P(\alpha) & Q(\alpha + \frac{\pi}{6})$$

Now point of intersection of tangents

|at
$$P(\alpha) & Q(\alpha + \frac{\pi}{6})$$
:

$$R\left(a\frac{\cos\left(\alpha + \frac{\pi}{12}\right)}{\cos\frac{\pi}{12}}, b\frac{\sin\left(\alpha + \frac{\pi}{12}\right)}{\cos\frac{\pi}{12}}\right)$$

Required area = $8 \times A_{CPR}$

Q.37 (D)

Let the points be $P(\theta)$ & $Q(\theta + \frac{\pi}{3})$, then equation of PQ will be

$$\frac{x}{3}\cos\left(\theta + \frac{\pi}{6}\right) + \frac{y}{2}\sin\left(\theta + \frac{\pi}{6}\right) = \cos\frac{\pi}{6}$$

$$\Rightarrow \frac{x}{3\sqrt{3}}\cos\left(\theta + \frac{\pi}{6}\right) + \frac{y}{\sqrt{3}}\sin\left(\theta + \frac{\pi}{6}\right) = 1$$

Hence PQ will touch $\frac{4x^2}{27} + \frac{y^2}{3} = 1$.

Q.38 (D)

Let the line be y = mx + c.

For being a tangent to the ellipse : $c^2 = a^2m^2 + b^2$

For being a tangent to the circle : $c^2 = r^2 (m^2 + 1)$

Hence $a^2m^2 + b^2 = r^2(m^2 + 1)$

$$\Rightarrow m = \pm \sqrt{\frac{r^2 - b^2}{a^2 - r^2}} = \tan \theta$$

Now parametric coordinates of a point at a distance p from S(ae, 0) on the line PQ will be $(ae + p\cos\theta, p\sin\theta)$

Substituting these coordinates in the equation of the circle gives

$$(ae + p\cos\theta)^2 + (p\sin\theta)^2 = r^2 \text{ or } p^2 + (2ae\cos\theta)p + a^2e^2 - r^2 = 0$$

Roots of this equation will be SP and SQ.

As SP & SQ are measured in opposite directions from S, hence

PQ = difference of roots

$$\Rightarrow PQ = \frac{\sqrt{4a^2e^2\cos^2\theta - 4\left(a^2e^2 - r^2\right)}}{2}$$

$$\Rightarrow$$
 PQ = $\sqrt{r^2 - a^2 e^2 \sin^2 \theta}$

Now
$$\tan^2 \theta = \frac{r^2 - b^2}{a^2 - r^2} \Rightarrow \sin^2 \theta = \frac{r^2 - b^2}{a^2 e^2}$$

$$\Rightarrow$$
 PQ = b.

Q.39 (C)

As (-4, 0) is one focus of the given ellipse hence after reflection the line will pass through the other focus i.e. (4, 0).

Lines joining (4, 0) and $\left(3, \pm \frac{12}{5}\right)$ are

$$y = \pm \frac{12}{5} (x - 4).$$

$\mathbf{Q.40}$ (A)

Let P be $(\sqrt{3}\cos\theta, \sin\theta)$, then A & B will be

$$\left(\frac{4\sqrt{3}\cos\theta}{3},0\right)$$
 & $\left(0,4\sin\theta\right)$ or $\left(4\sqrt{3}\cos\theta,0\right)$ & $\left(0,\frac{4}{3}\sin\theta\right)$

Case I:

Slope of AB =
$$-\frac{\sqrt{3}\sin\theta}{\cos\theta}$$
 and slope of tangent at P = $-\frac{\cos\theta}{\sqrt{3}\sin\theta}$

$$\Rightarrow -\frac{\sqrt{3}\sin\theta}{\cos\theta} = -\frac{\cos\theta}{\sqrt{3}\sin\theta} \text{ or } \sin\theta = \frac{1}{2} \& \cos\theta = \frac{\sqrt{3}}{2}$$

Hence P is
$$\left(\frac{3}{2}, \frac{1}{2}\right)$$
.

Now tangent to
$$\frac{x^2}{3} + y^2 = 1$$
 at this point is $x + y = 2$

Case II:

Slope of AB =
$$-\frac{\sin \theta}{3\sqrt{3}\cos \theta}$$
 and slope of tangent at P = $-\frac{\cos \theta}{\sqrt{3}\sin \theta}$

$$\Rightarrow -\frac{\sin \theta}{3\sqrt{3}\cos \theta} = -\frac{\cos \theta}{\sqrt{3}\sin \theta} \text{ or } \sin \theta = \frac{\sqrt{3}}{2} \& \cos \theta = \frac{1}{2}$$

Hence P is
$$\left(\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right)$$
.

Now tangent to $\frac{x^2}{3} + y^2 = 1$ at this point is $x + 3y = 2\sqrt{3}$.