Solutions

PARABOLA

Ex. 3

Q. 1 (A)

$\sqrt{x^{2}+y^{2}}=\frac{|x+y-4|}{\sqrt{2}} \Rightarrow x^{2}-2 x y+y^{2}+8 x+8 y-16=0$.

Q. 2 (A)

$\frac{1}{\mathrm{SP}}+\frac{1}{\mathrm{SQ}}=\frac{1}{\mathrm{a}} \Rightarrow 4 \mathrm{a}=\frac{24}{5}$.

Q. 3 (A)

Latus rectum $=$ twice the distance of the directrics from the focus.
\Rightarrow Latus rectum $=2$.

Q. 4 (D)

$y^{2}+4 y+4 x+2=0 \Rightarrow(y+2)^{2}=-4\left(x-\frac{1}{2}\right)$.
Hence equation of directrics is $x=\frac{3}{2}$.

Q. 5 (A)

Standard fact : $h^{2}=a b$.

Q. 6 (A)

Given equation is standard equation of a parabola in terms of its focus $(2,3)$ and directrics $(3 x+4 y-2=0)$.

Q. 7 (B)

Standard fact : From any point (h, 0) three distinct normals can be drawn to the parabola $y^{2}=4 a x$ if $\mathrm{h}>2 \mathrm{a}$ and only one normal (axis) can be drawn if $\mathrm{h}<2 \mathrm{a}$.

Q. 8 (C)

Standard fact : If tangent and normal at any point P on a parabola meet the axis at $\mathrm{T} \& \mathrm{G}$ and S is the focus than $\mathrm{ST}=\mathrm{SP}=\mathrm{SG}$.

Q. 9 (D)

Standard fact: Segment of any tangent, to a parabola, intercepted between the directrics and the point of tangency subtends a right angle at the focus.

Q. 10 (A)

Point on $y=x^{2}$ which is at least distance from $y=2 x-4$ will be the point where normal to the parabola is perpendicular to this line.
Now equation of normal having slope m to $x^{2}=4 a y: y=m x+2 a+\frac{a}{m^{2}}$, foot of normal being $\left(-\frac{2 \mathrm{a}}{\mathrm{m}}, \frac{\mathrm{a}}{\mathrm{m}^{2}}\right)$.

Here $\mathrm{m}=-\frac{1}{2} \& \mathrm{a}=\frac{1}{4}$, hence the required point is $(1,1)$.

Q. 11 (C)

Equation of tangent at the vertex : $\mathrm{x}-\mathrm{y}+1=0$.
Focus : $(0,0) \&$ Focal distance of the vertex : $a=\frac{1}{\sqrt{2}}$
Equation of directrics : $\mathrm{x}-\mathrm{y}+2=0$. \{Line parallel to the tangent at the vertex at a distance ' a ' from it $\}$
Now equation of the parabola : $\sqrt{x^{2}+y^{2}}=\left|\frac{x-y+2}{\sqrt{2}}\right|$
or $x^{2}+2 x y+y^{2}-4 x+4 y-4=0$.

Q. 12 (D)

Standard fact : Length of subnormal at any point on $y^{2}=4 \mathrm{ax}$ is 2 a .

Q. 13 (C)

The two parabolas touch each other at $(0,-1)$ hence angle of intersection is 0 .

Q. 14 (B)

Let the common tangent be $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, then
for being a tangent to $\mathrm{y}^{2}=8 \mathrm{ax}, \mathrm{c}=\frac{2 \mathrm{a}}{\mathrm{m}}$ and
for being a tangent to $x^{2}+y^{2}=2 a^{2}, c^{2}=2 a^{2}\left(1+m^{2}\right)$.
Hence $\frac{4 \mathrm{a}^{2}}{\mathrm{~m}^{2}}=2 \mathrm{a}^{2}\left(1+\mathrm{m}^{2}\right)$ or $\mathrm{m}^{4}+\mathrm{m}^{2}-2=0$.
Slopes of common tangents are $1 \&-1$.
\therefore Equations of common tangents are $\mathrm{y}= \pm \mathrm{x} \pm 2 \mathrm{a}$.

Q. 15

Any tangent having slope m to $\mathrm{y}^{2}=4 \mathrm{x}$ is $\mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}}$.
As it is drawn through $(-2,-1)$ hence $-1=-2 m+\frac{1}{m}$ or $2 m^{2}-m-1=0$.

Now $\mathrm{m}_{1}+\mathrm{m}_{2}=\frac{1}{2} \& \mathrm{~m}_{1} \mathrm{~m}_{2}=-\frac{1}{2} \Rightarrow \mathrm{~m}_{1}-\mathrm{m}_{2}=\frac{3}{2}$.
Hence angle between tangents will be given by $\tan \alpha=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$ or $\tan \alpha=3$.

Q. 16

Directrics of $\mathrm{y}^{2}=\mathrm{k}\left(\mathrm{x}-\frac{8}{\mathrm{k}}\right)$ will be $\mathrm{x}-\frac{8}{\mathrm{k}}=-\frac{\mathrm{k}}{4}$.
Given that the directrics is $x=1$, hence $\frac{8}{k}-\frac{k}{4}=1$ or $k^{2}+4 \mathrm{k}-32=0$.
Hence $\mathrm{k}=4 \&-8$.
Q. 17 (A)

Any tangent of slope m to $(x-6)^{2}+y^{2}=2$ will be
$\mathrm{y}=\mathrm{m}(\mathrm{x}-6) \pm \sqrt{2} \sqrt{1+\mathrm{m}^{2}}$.
Also focus of $y^{2}=16 x$ is $(4,0)$.
As the tangent passes through the focus, hence by substituting coordinates of focus in the equation of the tangent we get $\mathrm{m}^{2}=1$.

Q. 18 (C)

Let the moving point on parabola be $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$.
Also let midpoint of $\mathrm{P} \&(\mathrm{a}, 0)$ be $\mathrm{Q}(\mathrm{h}, \mathrm{k})$.
Now $h=\frac{a+t^{2}}{2}, k=a t$.
Eliminating t between $\mathrm{h} \& \mathrm{k}$ gives $\mathrm{k}^{2}=\mathrm{a}(2 \mathrm{~h}-\mathrm{a})$.
Locus of Q will be $y^{2}=2 a\left(x-\frac{a}{2}\right)$.
Directrics of this parabola is $\mathrm{x}=0$.

Q. 19 (B)

Length of double ordinate $=8 \mathrm{a}$
\therefore Coordinates of extremities of this double ordinate will be $\mathrm{P}(4 \mathrm{a}, 4 \mathrm{a}) \& \mathrm{Q}(-4 \mathrm{a}, 4 \mathrm{a})$.
Now slope of $\mathrm{OP}=1 \&$ slope of $\mathrm{OQ}=-1$, hence angle between $\mathrm{OP} \& \mathrm{OQ}=\frac{\pi}{2}$.

Q. 20 (A)

$y^{2}-2 y-4 x+5=0 \Rightarrow(y-1)^{2}=4(x-1)$.
Now axis of the parabola : $\mathrm{y}=1$.
Vertex: $(1,1) \& a=1$.
Now from any point on the axis three normal can be drawn if it is at a distance more than 2 from the vertex. Hence such a point will be $(x, 1), x>3$.

Q. 21 (A)

Slope of $y=\sqrt{3} x-3$, is $\sqrt{3}$, hence any point on this line at a distance r from $P(\sqrt{3}, 0)$ will be $\left(\sqrt{3}+\frac{r}{2}, \frac{\sqrt{3} r}{2}\right)$. Substituting these coordinates in the equation of the parabola gives $\frac{3 r^{2}}{4}=\sqrt{3}+\frac{r}{2}+2$ or $3 r^{2}+2 r-4(\sqrt{3}+2)=0$.
Now PA.PB will be positive product of roots of this equation.
\therefore PA.PB $=\frac{4(\sqrt{3}+2)}{3}$.

Q. 22 (C)

Let the length of tangent from the origin to the circle passing through A \& B be l.
As $\mathrm{O}, \mathrm{A} \& \mathrm{~B}$ are collinear hence $l^{2}=\mathrm{OA} . \mathrm{OB}$
Now OA \& OB will be the roots of $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0 \quad \therefore l^{2}=\frac{\mathrm{c}}{\mathrm{a}}$.

Q. 23 (D)

As normals at the given points are concurrent hence $\mathrm{p}+\mathrm{q}+\mathrm{r}=0$.
Clearly 1 satisfies both the equations.

Q. 24 (B)

Coordinates of R will be $\left(1, \frac{3 \lambda+1}{\lambda+1}\right)$.
If it lies inside $y^{2}=4 x$, then $\left(\frac{3 \lambda+1}{\lambda+1}\right)^{2}<4$ or $-2<\frac{3 \lambda+1}{\lambda+1}<2$.
$\therefore-\frac{3}{5}<\lambda<1$.
Q. 25 (A)

Clearly $9 \mathrm{a}<9$ \& $(6 a)^{2}<16(9 a)$.
$\Rightarrow \mathrm{a}<1 \& 0<\mathrm{a}<4$.
Hence $\mathrm{a} \in(0,1)$.

Q. 26 (C)

For $(1,-2), x^{2}+2 x y+y^{2}+2 x+3 y+1<0$, hence this point lies inside the curve.
No tangent can be drawn from $(1,-2)$.

Q. 27 (A)

Let the common tangent be $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, then
for being a tangent to $\mathrm{y}^{2}=8 \mathrm{x}, \mathrm{c}=\frac{2}{\mathrm{~m}}$ and
for being a tangent to $x^{2}+y^{2}=2, c^{2}=2\left(1+m^{2}\right)$.
Hence $\frac{4}{\mathrm{~m}^{2}}=2\left(1+\mathrm{m}^{2}\right)$ or $\mathrm{m}^{4}+\mathrm{m}^{2}-2=0$.
Slopes of common tangents are $1 \&-1$.
\therefore There are two mutually perpendicular common tangents.

Q. 28 (D)

Slope of $\mathrm{OP}=\tan \frac{\pi}{3} \Rightarrow \frac{2}{t}=\frac{1}{\sqrt{3}}$ or $\mathrm{t}=2 \sqrt{3}$
Hence coordinates of P will be $(12 \mathrm{a}, 4 \sqrt{3} \mathrm{a})$.
Now length of $O P=\sqrt{144 \mathrm{a}^{2}+48 \mathrm{a}^{2}}$ i.e. $8 \sqrt{3} \mathrm{a}$.

Q. 29 (A)

If the circle is touching parabola externally, then its center $(-\lambda, 0)$ must lie outside this parabola. $\Rightarrow 0>-4 \lambda$ or $\lambda>0$.

Q. 30 (A)

$\mathrm{t}^{2}=\mathrm{x}-1 \& \mathrm{t}=\frac{\mathrm{y}-1}{2}$ gives $(\mathrm{y}-1)^{2}=4(\mathrm{x}-1)$.
Equation of directrics will be $\mathrm{x}-1=-1$ i.e. $\mathrm{x}=0$.

Q. 31 (B)

1. $y^{2}=4 a(x+a) \Rightarrow$ Focus will be $(0,0)$ but focus at the origin $\nRightarrow y^{2}=4 a(x+a)$.
2. $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0 \Rightarrow \mathrm{y}=-\frac{1}{\mathrm{~m}} \mathrm{x}-\frac{\mathrm{n}}{\mathrm{m}}$.

As its touching $\mathrm{y}^{2}=4 \mathrm{ax}$, hence $\frac{\mathrm{n}}{\mathrm{m}}=\frac{\mathrm{a}}{\mathrm{l} / \mathrm{m}}$ or $\mathrm{nl}=\mathrm{am}^{2}$.
Q. 32 (D)
$y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2} \Rightarrow\left(x^{2}+\frac{3}{4 a}\right)^{2}=\frac{3}{a^{3}}\left(y+\frac{3 a}{16}\right)$.
Now vertex will be $\mathrm{h}=-\frac{3}{4 \mathrm{a}} \& \mathrm{k}=-\frac{3 \mathrm{a}}{16}$.
By eliminating a we get $\mathrm{hk}=\frac{9}{64}$.
Required locus is $64 \mathrm{xy}=9$.

Q. 33 (B)

Standard fact : If TP \& TQ are tangents \& S is the focus, then $\mathrm{SP} \times \mathrm{SQ}=\mathrm{ST}^{2}$.

Q. 34 (D)

If normals at $\mathrm{P}\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{1}\right) \& \mathrm{Q}\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{a} t_{2}\right)$ meet at a point R on the parabola, then $\mathrm{t}_{1} \mathrm{t}_{2}=2$. Hence product of ordinates of $\mathrm{P} \& \mathrm{Q}$ will be $8 \mathrm{a}^{2}$.

Q. 35 (A)

Slope of chord having one end at $(0,0) \&$ other at $\mathrm{P}\left(2 \mathrm{t}, \mathrm{t}^{2}\right)$, is $\frac{\mathrm{t}}{2}$ and length is $l=\sqrt{4 \mathrm{t}^{2}+\mathrm{t}^{4}}$.
Now given $\frac{\mathrm{t}}{2}=\cot \alpha \therefore l=\sqrt{16 \cot ^{2} \alpha+16 \cot ^{4} \alpha}$ or $4 \cot \alpha \operatorname{cosec} \alpha$.

Q. 36 (C)

Area of triangle formed by $\mathrm{P}\left(\mathrm{at}_{1}{ }^{2}, 2 a t_{1}\right), \mathrm{Q}\left(\mathrm{at}_{2}{ }^{2}, 2 a t_{2}\right) \& R\left(a t_{3}{ }^{2}, 2 a t_{3}\right)$ will be
$A=\frac{1}{2}\left\|\begin{array}{lll}1 & a_{1}{ }^{2} & 2 a_{1} \\ 1 & \mathrm{at}_{2}{ }^{2} & 2 \mathrm{at}_{1} \\ 1 & \mathrm{at}_{3}{ }^{2} & 2 \mathrm{at}_{3}\end{array}\right\|$ i.e. $\mathrm{a}^{2}\left|\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)\left(\mathrm{t}_{2}-\mathrm{t}_{3}\right)\left(\mathrm{t}_{3}-\mathrm{t}_{1}\right)\right|$.
Now $t_{1}=\frac{y_{1}}{2 a}, t_{2}=\frac{y_{2}}{2 a} \& t_{3}=\frac{y_{3}}{2 a}$, hence
$A=\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|$.

Q. 37 (B)

Tangent to $y^{2}=4 x$ at $(1,2)$ is $2 y=2(x+1)$ or $x-y+1=0$.
Now image of any point $P(h, k)$ will be given by
$\frac{\mathrm{x}-\mathrm{h}}{2}=\frac{\mathrm{y}-\mathrm{k}}{-2}=-\frac{\mathrm{h}-\mathrm{k}+1}{2}$ i.e. $\mathrm{x}=\mathrm{k}-1 \& \mathrm{y}=\mathrm{h}+1$.
If $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ lies on the given parabola, then $\mathrm{P}(\mathrm{h}, \mathrm{k})$ will lie on the reflection of this parabola.

Substituting coordinates of Q in $\mathrm{y} 2=4 \mathrm{x}$ gives $(\mathrm{h}+1)^{2}=4(\mathrm{k}-1)$
Hence reflection of this parabola will be locus of P i.e. $(x+1)^{2}=4(y-1)$.

Q. 38 (C)

Let $P\left(a t_{1}{ }^{2}, 2 a t_{1}\right), Q\left(a t_{2}{ }^{2}, 2 a t_{2}\right) \& R\left(a t_{3}{ }^{2}, 2 a t_{3}\right)$ be feet of normals concurrent $a t(h, k)$.
Now $t_{1}+t_{2}+t_{3}=0$, hence ordinate centroid of $\triangle P Q R$ will be 0 .
Centroid lies on $\mathrm{x}-$ axis.

Q. 39 (C)

Standard fact : From any point $(c, 0)$ three distinct normals can be drawn to the parabola $y^{2}=4 a x$ if $c>2 a$. Hence for $y^{2}=x, a=1 / 4$, and $c>1 / 2$.

Q. 40 (C)

Length of Latus rectum $=$ Twice the normal distance between focus $\&$ directrics.
\therefore Latus rectum $=10$.

Q. 41 (A)

For $y^{2}=4 a x$ the directrics is $x=-a$,
hence for $(y+3)^{2}=2(x+2)$ directrics will be $x+2=-\frac{1}{2}$ or $2 x+5=0$.

Q. 42 (A)

Standard fact : Angle between tangents at extremities of any focal chord is a right angle.

Q. 43 (D)

Any line, except x - axis, passing through $(2,0)$ will meet the parabola in two points as this point lies inside the parabola.
Hence range of values of m is $(-\infty, \infty)-\{0\}$.

Q. 44

Let A be $\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right) \& \mathrm{~B}$ be $\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right)$, then equation of circle will be
$\left(x-a t_{1}{ }^{2}\right)\left(x-a t_{2}{ }^{2}\right)+\left(y-2 a t_{1}\right)\left(y-2 a t_{2}\right)=0$
or $x^{2}+y^{2}-a\left(t_{1}{ }^{2}+t_{2}{ }^{2}\right) x-2 a\left(t_{1}+t_{2}\right) y+a^{2}\left(t_{1}{ }^{2} t_{2}{ }^{2}+4 t_{1} t_{2}\right)=0$
Now radius $\mathrm{r}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$ as the circle is touching $\mathrm{x}-$ axis.
Also slope of chord $A B=\frac{2}{t_{1}+t_{2}} \therefore$ slope of $A B=\frac{2 a}{r}$.

Q. 45 (A)

For PQ to be a normal chord, $t_{2}=-t_{1}-\frac{2}{t_{1}}$ and
for PQ to subtend right angle at the origin, $\mathrm{t}_{1} \mathrm{t}_{2}=-4$.

From the two relations we get $\mathrm{t}_{1}{ }^{2}=2$.

Q. 46 (B)

Standard fact : Any line parallel to the axis of a parabola passes through its focus after getting reflected from the parabola.
Now focus of $(y+3)^{2}=4(x+1)$ is $(1-1,0-3)$ or $(0,-3)$.

Q. 47 (C)

Let the moving point on parabola be $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$.
Also let midpoint of $\mathrm{P} \&(\mathrm{a}, 0)$ be $\mathrm{Q}(\mathrm{h}, \mathrm{k})$.
Now $h=\frac{a+\mathrm{at}^{2}}{2}, \mathrm{k}=\mathrm{at}$.
Eliminating t between $\mathrm{h} \& \mathrm{k}$ gives $\mathrm{k}^{2}=\mathrm{a}(2 \mathrm{~h}-\mathrm{a})$.
Locus of Q will be $y^{2}=2 a\left(x-\frac{a}{2}\right)$.
Vertex of this parabola is $\left(\frac{\mathrm{a}}{2}, 0\right)$.

Q. 48 (B)

Slope of $\mathrm{OP}=\tan \frac{\pi}{3} \Rightarrow \frac{2}{\mathrm{t}}=\frac{1}{\sqrt{3}}$ or $\mathrm{t}=2 \sqrt{3}$
Hence coordinates of P will be $(12 \mathrm{a}, 4 \sqrt{3} \mathrm{a})$.
Length of $O P=\sqrt{144 a^{2}+48 a^{2}}$ i.e. $8 \sqrt{3} a$.
Now area of an equilateral triangle $=\frac{\sqrt{3}}{4}(\text { side })^{2}$
i.e. $48 \sqrt{3} a^{2}$.

Q. 49 (B)

Latus rectum is parallel to $y-$ axis and focus is at $(3,-1)$.
Length of Latus rectum $=2$, hence $a=1 / 2$.
Now foot of directrics will be at a distance 1 from focus and along a line parallel to $x-$ axis, passing through $(3,-1)$.
Hence foot of directrics is $(2,-1)$ or $(4,-1)$.
Equation of directrics is $\mathrm{x}=2$ or $\mathrm{x}=4$.
Q. 50 (C)

For $P, x=y$ gives the point on $y^{2}=4 a x$ as $P(4 a, 4 a)$ as normal at origin doesn't meet the parabola again so $(0,0)$ can't be P.
Now $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right) \equiv(4 \mathrm{a}, 4 \mathrm{a})$ gives $\mathrm{t}=2$.
\therefore For $\mathrm{Q}\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right), \mathrm{t}_{1}=-\mathrm{t}-\frac{2}{\mathrm{t}}$ gives $\mathrm{t}_{1}=-3$ and hence Q is $(9 \mathrm{a},-6 \mathrm{a})$.
Now slope of $\mathrm{PF}=4 / 3 \&$ that of $\mathrm{QF}=-3 / 4$.
As product of slopes is -1 so $\angle \mathrm{PFQ}=\frac{\pi}{2}$.

