Parabola

Exercise - 1

Q. 1 (A)

$S(0,1)$ directric $x+2 y=0$
$\Rightarrow \mathrm{PS}=\mathrm{PM}$
$\Rightarrow \sqrt{\mathrm{x}^{2}+(\mathrm{y}-1)^{2}}=\left|\frac{\mathrm{x}+2 \mathrm{y}}{\sqrt{5}}\right|$
$\Rightarrow 5\left[x^{2}+y^{2}-2 y+1\right]=(x+2 y)^{2}$

Q. 2 (D)

$y^{2}=18 \mathrm{x} \quad\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$
$\Rightarrow \therefore 2 \mathrm{at}=3\left[\mathrm{at}^{2}\right]$
$\Rightarrow 2=3 \mathrm{t}$
$\Rightarrow \mathrm{t}=\frac{2}{3}$
$\Rightarrow \therefore\left(\mathrm{at}^{2}, 2 \mathrm{at}\right) \equiv\left(\frac{18}{4}\left(\frac{4}{9}\right), 2\left(\frac{18}{4}\right)\left(\frac{2}{3}\right)\right]$
$\equiv(2,6)$
Q. 3 (C)
$y^{2}=\left(\frac{4}{5}\right) x$
$\Rightarrow \therefore$ Equation of directrix is $\mathrm{x}+\mathrm{a}=0$
$\Rightarrow \mathrm{x}+\left(\frac{1}{5}\right)=0$

Q. 4

$y^{2}=8 x$

$\Rightarrow \mathrm{SP}=\mathrm{PM}=8$
$\Rightarrow a+a t^{2}=8$
$\Rightarrow \mathrm{t}= \pm \sqrt{3}$
$\Rightarrow \therefore \mathrm{x}$ coordinate $=\mathrm{at}^{2} \equiv(2)(3)=6$

Q. 5

$y^{2}=4 a x ;$ as parabola passes through $(-3,2)$ So
$\therefore 4=4 a(-3)$
$\Rightarrow 4 \mathrm{a}=-\frac{4}{3}$
$\Rightarrow \ell($ L.R. $)=|4 \mathrm{a}|=\frac{4}{3}$

Q. 6 (A)

$\left.\begin{array}{l}x^{2}=-8 a y \\ Y^{2}=4 A X\end{array}\right\}$ compare both of them
$\Rightarrow 4 \mathrm{~A}=8 \mathrm{a} ; \mathrm{A}=2 \mathrm{a}$
$\Rightarrow \mathrm{Y}=\mathrm{x}, \mathrm{X}=-\mathrm{y}$
For focus $X=A \Rightarrow-y=2 a$
$\Rightarrow \mathrm{Y}=0 \Rightarrow \mathrm{x}=0$
$\Rightarrow \mathrm{S}(0,-2 \mathrm{a})$
Directrix is $\mathrm{X}+\mathrm{A}=0$

$$
\Rightarrow(-\mathrm{y})+2 \mathrm{a}=0
$$

$\Rightarrow \mathrm{y}=2 \mathrm{a}$
Q. 7 (C)

Equation of parabola
$\Rightarrow x^{2}=-4 b y \quad$; as parabola passes through $(6,-3)$ so
$\Rightarrow 36=-4 \mathrm{~b}(-3)$
$\Rightarrow \mathrm{b}=3$
\therefore Equation of parabola
$\Rightarrow x^{2}=-12 y$

Q. 8 (A)

$x^{2}+4 x+2 y-7=0$
$\Rightarrow(\mathrm{x}+2)^{2}=2\left(-\mathrm{y}+\frac{11}{2}\right)$
Compare (1) with $\mathrm{Y}^{2}=4 \mathrm{AX}$ \qquad
$\Rightarrow \mathrm{Y}=\mathrm{x}+2, \mathrm{X}=-\mathrm{y}+\frac{11}{2}, \mathrm{~A}=\frac{1}{2}$
\Rightarrow Vertex $X=0 \Rightarrow-y+\frac{11}{2}=0$
$\Rightarrow \mathrm{Y}=0 \Rightarrow \mathrm{x}+2=0$
\Rightarrow Vertex $\mathrm{A}\left(-2, \frac{11}{2}\right)$

Q. 9

$4 y^{2}-6 x-4 y=5$
$\Rightarrow y^{2}-\frac{3}{2} x-y=\frac{5}{4}$
$\Rightarrow\left(y-\frac{1}{2}\right)^{2}-\frac{1}{4}-\frac{3}{2} x=\frac{5}{4}$
$\Rightarrow\left(\mathrm{y}-\frac{1}{2}\right)^{2}=\frac{3}{2}(\mathrm{x}+1)$
compare (1) with $\mathrm{y}^{2}=4 \mathrm{AX}$
$\Rightarrow \therefore$ focus is $\mathrm{X}=\mathrm{A} \Rightarrow(\mathrm{x}+1)=\frac{3}{8}$
$\Rightarrow \mathrm{Y}=0 \Rightarrow \mathrm{y}-\frac{1}{2}=0$
$\Rightarrow S\left(-\frac{5}{8}, \frac{1}{2}\right)$
Q. 10 (C)
$y^{2}+8 y-8 x=0$
$\Rightarrow(y+4)^{2}=8 x+16$
$\Rightarrow(y+4)^{2}=8(x+2)$
Compare with $\mathrm{Y}^{2}=4 \mathrm{AX}$
$E q^{\mathrm{n}}$. of directrix $\mathrm{X}+\mathrm{A}=0$
$\Rightarrow(\mathrm{x}+2)+(2)=0$
$\Rightarrow x+4=0$
Q. 11 (A)
$y^{2}-4 k x+8=0$
$\Rightarrow \mathrm{y}^{2}=4 \mathrm{k}\left(\mathrm{x}-\frac{2}{\mathrm{k}}\right)$
\Rightarrow vertex $\mathrm{A}=\left(\frac{2}{\mathrm{k}}, 0\right)$

Perpendicular distance of vertex from directrix $x-3=0$ is equal to $=\frac{\ell(L R)}{4}$
$\Rightarrow\left|\frac{\frac{2}{\mathrm{k}}-3}{1}\right|=\left|\frac{4 \mathrm{k}}{4}\right|$
$\Rightarrow \frac{|2-3 \mathrm{k}|}{|\mathrm{k}|}=|\mathrm{k}|$
$\Rightarrow \mathrm{k}^{2}=2-3 \mathrm{k}$
or
$\mathrm{k}^{2}=3 \mathrm{k}-2$
$\Rightarrow \mathrm{k}^{2}+3 \mathrm{k}-2=0$
or
$\mathrm{k}^{2}-3 \mathrm{k}+2=0$
$\Rightarrow \mathrm{k}=\frac{-3 \pm \sqrt{9+8}}{2}$
$\mathrm{k}=1,2$
Q. 12 (C)

A (1, 1), S (3, 1)
$\Rightarrow \mathrm{AS}=2$

$\Rightarrow \therefore \mathrm{Eq}^{\mathrm{n}}$ of parabola
$\Rightarrow(\mathrm{y}-1)^{2}=4 \times 2(\mathrm{x}-1)$

Q. 13 (D)

$x-2=t^{2}, y=2 t$
eliminate " t "
$\Rightarrow \therefore \mathrm{x}-2=\left(\frac{\mathrm{y}}{2}\right)^{2}$
$\Rightarrow y^{2}=4(x-2)$

Q. 14

$y^{2}=4 x$
$\Rightarrow y^{2}-4 \mathrm{x}=0$
$\Rightarrow(\mathrm{S})_{(1,3)}=9-4>0$
$\Rightarrow(S)_{(1,1)}=1-4<0$
$\Rightarrow \therefore \mathrm{P}(1,3)$ is outside the Parabola.
$\Rightarrow \mathrm{Q}(1,1)$ is inside the parabola.
Q. 15 (D)

	$1: \lambda$	
P	Q	R
$(1,3)$	$(1,1)$	$(1, \mathrm{y})$

$\Rightarrow \frac{\mathrm{PQ}}{\mathrm{QR}}=\frac{1}{\lambda}$
$\Rightarrow \frac{1 \times \mathrm{y}_{1}+\lambda \times 3}{\lambda+1}=1$
$\Rightarrow \mathrm{y}_{1}=(\lambda+1)-3 \lambda=1-2 \lambda$
$\Rightarrow \therefore \mathrm{R}(1,1-2 \lambda)$
R is interior point of $y^{2}-4 x=0$
So, $(1-2 \lambda)^{2}-4<0$
$\Rightarrow 4 \lambda^{2}-4 \lambda-3<0$
$\Rightarrow \lambda \in\left(-\frac{1}{2}, \frac{3}{2}\right)$
Q. 16 (B)
$y=2 x+\lambda ; y^{2}=2 x$
$\Rightarrow \mathrm{L}($ chord $)=\frac{4}{\mathrm{~m}^{2}} \sqrt{\mathrm{a}(\mathrm{a}-\mathrm{mc})\left(1+\mathrm{m}^{2}\right)}$
For line which does not intersect $\mathrm{a}-\mathrm{mc}<0$
$\Rightarrow\left(\frac{2}{4}\right)-(2)(\lambda)<0$
$\Rightarrow \lambda>\frac{1}{4}$
Q. 17 (C)
$y^{2}=4 a x$
$\Rightarrow 4=4 \mathrm{a}(1)$
$\Rightarrow \mathrm{a}=1$
tangent at $(1,-2)$ is
$\Rightarrow \mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)$
$\Rightarrow \mathrm{y}(-2)=2 \times 1(\mathrm{x}+1)$
$\Rightarrow \mathrm{x}+\mathrm{y}+1=0$
Q. 18 (D)
$y^{2}=16 x$
\Rightarrow tangent in slope form $y=m x+\frac{4}{m}$
\Rightarrow slope of tangent $\mathrm{m}=-\frac{1}{3}$
$\Rightarrow \therefore \mathrm{y}=-\frac{1}{3} \mathrm{x}-12$
Q. 19 (D)
$y^{2}=x ;$ slope of tangent $m=\tan 45^{\circ}$.
$\Rightarrow \mathrm{m}=1$
\Rightarrow point of contact $\equiv\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$ as $\mathrm{a}=\frac{1}{4}$
$\Rightarrow \equiv\left(\frac{1}{4}, \frac{1}{2}\right)$
Q. 20
$y=2 x+2$ touches $y^{2}=16 x$
$\Rightarrow \mathrm{m}=2, \frac{\mathrm{a}}{\mathrm{m}}=\frac{4}{2}=2$
Point of contact of tangent $\equiv\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
$\Rightarrow \equiv\left(\frac{4}{4}, \frac{2 \times 4}{2}\right)$
$\Rightarrow \equiv(1,4)$
Q. 21 (A)

Equation of tangent at $\left(\frac{\mathrm{a}}{\mathrm{t}^{2}}, \frac{2 \mathrm{a}}{\mathrm{t}}\right)$
$\Rightarrow \mathrm{x}=\frac{\mathrm{a}}{\mathrm{t}^{2}}$
$\Rightarrow \mathrm{y}=\frac{2 \mathrm{a}}{\mathrm{t}}$
put $\mathrm{t}=\frac{1}{\mathrm{u}}$
\Rightarrow So, $x=\mathrm{au}^{2}, \mathrm{y}=2 \mathrm{au}$ which gives parabola $\mathrm{y}^{2}=4 \mathrm{ax}$
Equation of tangent $u y=x+a u^{2}$
$\Rightarrow \frac{1}{\mathrm{t}} \mathrm{y}=\mathrm{x}+\frac{\mathrm{a}}{\mathrm{t}^{2}}$
$\Rightarrow t y=t^{2} x+a$
Q. 22 (A)
$y^{2}=4 x$
$\Rightarrow \mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}} ; \mathrm{eq}^{\mathrm{n}}$ of tangent in slope form \& it passes through $(-2,-1)$ then
$\Rightarrow-1=-2 \mathrm{~m}+\frac{1}{\mathrm{~m}}$
$\Rightarrow 2 m^{2}-2 m-1=0$

$$
\left(\mathrm{m}_{1}=1, \mathrm{~m}_{2}=-\frac{1}{2}\right)
$$

$\Rightarrow \tan \alpha=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$\Rightarrow \tan \alpha=\left|\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right|=3$
Q. 23 (B)
$y^{2}=4 a x$
$\Rightarrow \mathrm{x}^{2}=4 \mathrm{by}$
for point of intersection solve (1) \& (2)
$\Rightarrow\left(\frac{\mathrm{x}^{2}}{4 \mathrm{~b}}\right)^{2}=4 \mathrm{ax}$
$\Rightarrow \mathrm{x}=0, \mathrm{x}=\left(64 \mathrm{ab}^{2}\right)^{\frac{1}{3}}$
$\Rightarrow x=4 \mathrm{a}^{\frac{1}{3}} \mathrm{~b}^{\frac{2}{3}}$

$\Rightarrow \therefore$ Point of intersection $\mathrm{P}\left(4 \mathrm{a}^{\frac{1}{3}} \mathrm{~b}^{\frac{2}{3}}, 4 \mathrm{a}^{\frac{2}{3}}, \mathrm{~b}^{\frac{2}{3}}\right)$
Angle between curves $=$ angle between the in tangents at intersection point
\Rightarrow slope $\mathrm{m}_{1}=\frac{2 \mathrm{a}}{\mathrm{y}_{1}}=\frac{2 \mathrm{a}}{4 \mathrm{~b}^{\frac{1}{3}} \mathrm{a}^{\frac{2}{3}}}$
$\Rightarrow \mathrm{m}_{1}=\frac{1}{2}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{\frac{1}{3}}$
$\Rightarrow \mathrm{m}_{2}=\frac{\mathrm{x}_{1}}{2 \mathrm{~b}}=\frac{4\left(\mathrm{a}^{\frac{1}{2}}\right)\left(\mathrm{b}^{\frac{2}{3}}\right)}{2 \mathrm{~b}}$
$\Rightarrow \mathrm{m}_{2}=2\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{\frac{1}{3}}$
$\Rightarrow \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|=\left|\frac{\left(\frac{a}{b}\right)^{\frac{1}{3} \times \frac{3}{2}}}{1+\left(\frac{a}{b}\right)^{\frac{2}{3}}}\right|$
$\Rightarrow\left|\frac{\frac{3}{2}}{\left(\frac{b}{a}\right)^{\frac{1}{3}}+\left(\frac{a}{b}\right)^{\frac{1}{3}}}\right|=\left|\frac{\frac{3}{2}}{\frac{\sqrt{3}}{2}}\right|=\sqrt{3}$
$\Rightarrow \theta=60^{\circ}$
Q. 24 (C)
$(x+2)^{2}+y^{2}=4$
$E q^{n}$ of parabola $y^{2}=8 x$ in parametric form is ty $=x+2 t^{2}$
If (2) touches eq^{n} (1)
$\Rightarrow \therefore\left|\frac{-2+\mathrm{t}(0)+2 \mathrm{t}^{2}}{\sqrt{1+\mathrm{t}^{2}}}\right|=2$
$\Rightarrow\left|\mathrm{t}^{2}-1\right|=\sqrt{\mathrm{t}^{2}+1}$
$\Rightarrow \mathrm{t}^{4}+1-2 \mathrm{t}^{2}=\mathrm{t}^{2}+1$
$\Rightarrow \mathrm{t}^{2}=0, \mathrm{t}^{2}=3$
$\Rightarrow t= \pm \sqrt{3}$
$\therefore \mathrm{eq}^{\mathrm{n}}$ of tangents are
$\Rightarrow \mathrm{x}=0$,
$\Rightarrow \pm \sqrt{3} y=x+6$
to be above x - axis slope of tangent is positive.

Q. 25 (B)

Intersection point of $y^{2}=4 a x \& x^{2}=4 a y$ are $A(0,0), B(4 a, 4 a)$
$\therefore \mathrm{eq}^{\mathrm{n}}$ of line passing through A \& B is
$\Rightarrow \mathrm{y}=\mathrm{x}$
$\Rightarrow 6 \mathrm{x}+\mathrm{cy}+\mathrm{d}=0$
(1) \& (2) are same, so
$\Rightarrow \mathrm{d}=0, \mathrm{~b}=-\mathrm{c}$
$\Rightarrow(b+c)=0$
Q. 26
$x+y=a$ is normal.
$\Rightarrow \mathrm{y}=-\mathrm{x}+\mathrm{a} ; \mathrm{m}=-1$
$\Rightarrow y^{2}=12 x$
$\Rightarrow \therefore \mathrm{a}=-2 \mathrm{a}^{\prime} \mathrm{m}-\mathrm{a}^{\prime} \mathrm{m}^{3}$
$=-2(3)(-1)-(3)(-1)^{3}$
$\Rightarrow \mathrm{a}=9$

Q. 27 (B)

$\operatorname{Point}\left(\frac{\mathrm{a}}{4}, \mathrm{a}\right) \equiv\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ to $\mathrm{y}^{2}=4 \mathrm{ax}$
$\Rightarrow \therefore \mathrm{t}=\frac{1}{2}$
Eq^{n} of normal is
$\Rightarrow \mathrm{y}+\mathrm{tx}=2 \mathrm{at}+\mathrm{at}^{3}$
$\Rightarrow \mathrm{y}+\frac{1}{2} \mathrm{x}=2(\mathrm{a})\left(\frac{1}{2}\right)+\mathrm{a}\left(\frac{1}{8}\right)$
$\Rightarrow 8 \mathrm{y}+4 \mathrm{x}=8 \mathrm{a}+\mathrm{a}$
$\Rightarrow 8 \mathrm{y}+4 \mathrm{x}=9 \mathrm{a}$
Q. 28 (B)
$y^{2}=8 x$
normal is parallel to $2 \mathrm{y}=\mathrm{x}+5$
$\Rightarrow \therefore$ slope of normal $\mathrm{m}=\frac{1}{2}$
$\Rightarrow \therefore$ foot of normal $=\left(\mathrm{am}^{2},-2 \mathrm{am}\right)$
$\equiv\left(2 \times \frac{1}{4},-2 \times 2 \times \frac{1}{2}\right)$
$\equiv\left(\frac{1}{2},-2\right)$
Q. 29 (A)
$y^{2}=4 a x$
end point of L.R.
$\Rightarrow \mathrm{L}(\mathrm{a}, 2 \mathrm{a}), \mathrm{L}^{\prime}(\mathrm{a},-2 \mathrm{a})$
$\Rightarrow \mathrm{t}_{1}=1, \quad \mathrm{t}_{2}=-1$
$\Rightarrow \therefore \mathrm{eq}^{\mathrm{n}}$ of normals are
$\Rightarrow \mathrm{y}+\mathrm{tx}=2 \mathrm{at}+\mathrm{at}^{3}$
$\Rightarrow \mathrm{y}+\mathrm{x}=3 \mathrm{a}$
$\Rightarrow \mathrm{y}-\mathrm{x}=-3 \mathrm{a}$
combined equation of normal's are
$\Rightarrow[y+(x-3 a)][y-(x-3 a)]=0$
$\Rightarrow y^{2}-(x-3 a)^{2}=0$
Q. 30 (A)
$x^{2}=8 y$
eq^{n} of normal in parametric form
$\Rightarrow \mathrm{x}+\mathrm{ty}=2 \mathrm{at}+\mathrm{at}^{3}$
$\Rightarrow \mathrm{x}+\mathrm{ty}=4 \mathrm{t}+2 \mathrm{t}^{3}$
$\ldots \ldots . . .(1)(\because a=2)$
slope of normal $-\frac{1}{t}=m$ (say)
so putt $=-\frac{1}{m}$ in eq $^{\mathrm{n}}(1)$
$\Rightarrow \mathrm{x}-\frac{1}{\mathrm{~m}} \mathrm{y}=-\frac{\mathrm{y}}{\mathrm{m}}-\frac{2}{\mathrm{~m}^{3}}$
$\Rightarrow m^{3} x-m^{2} y=-4 m^{2}-2$ equation of normal in slope form if this normal passes through (h, k) SO
$\Rightarrow \therefore \mathrm{m}^{3} \mathrm{~h}+(4-\mathrm{k}) \mathrm{m}^{2}+2=0 \quad\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right)$
$\Rightarrow \mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{~m}_{3}=\frac{-2}{\mathrm{~h}}$
But $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$ (given) $(\because$ two of the normal's are perpendicular)
$\Rightarrow \therefore \mathrm{m}_{3}=\frac{2}{\mathrm{~h}}$
The value of m_{3} has to satisfy eq ${ }^{\mathrm{n}}$ (2)
$\Rightarrow \therefore\left(\frac{8}{\mathrm{~h}^{3}}\right) \mathrm{h}+(4-\mathrm{k})\left(\frac{4}{\mathrm{~h}^{2}}\right)+2=0$
So locus (h, k) is $x^{2}=2(y-6)$
Q. 31
$y^{2}=4 a x$
let (h, k) is centroid of $P\left(a t_{1}{ }^{2}, 2 a t_{1}\right), Q\left(a t_{2}{ }^{2}, 2 a t_{2}\right), R\left(a t_{3}{ }^{2}, 2 a t_{3}\right)$ is $k=2 a \frac{\left(t_{1}+t_{2}+t_{3}\right)}{3}=0$
so locus of centroid is $y=0$
Q. 32 (C)

Two of the foot of normal's are $(1,2) \&(1,-2)$ for $y^{2}=4 x$
as we can see that foot of normal's given such that $t_{1}=1, t_{2}=-1$
$\Rightarrow \mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}=0$
$\Rightarrow 1+(-1)+\mathrm{t}_{3}=0$
$\Rightarrow \mathrm{t}_{3}=0$
\Rightarrow so $3^{\text {rd }}$ foot is $(0,0)$

Q. 33 (B)

$\left(\mathrm{au}^{2}, 2 \mathrm{au}\right),\left(\mathrm{av}^{2}, 2 \mathrm{av}\right)$ are extremities of focal chord $\mathrm{y}^{2}=4 \mathrm{ax}$
\Rightarrow So uv $=-1 \quad$ (by property)

Q. 34 (C)

$y^{2}=8 x$
$E q^{\mathrm{n}}$ of chord of contact of $(2,5)$ is $\mathrm{T}=0$
$\Rightarrow \mathrm{y}(5)-2 \times 2(\mathrm{x}+2)=0$
$\Rightarrow \mathrm{y}=\frac{4}{5} \mathrm{x}+\frac{8}{5}$
Compare with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
$\Rightarrow \mathrm{m}=\frac{4}{5}, \mathrm{c}=\frac{8}{5}$
$\Rightarrow \therefore$ Length of chord $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ for $\mathrm{y}^{2}=8 \mathrm{x}$ is
$\Rightarrow \frac{4}{\mathrm{~m}^{2}} \sqrt{\mathrm{a}(\mathrm{a}-\mathrm{mc})\left(1+\mathrm{m}^{2}\right)}$ put the values now.
Q. 35 (A)

$$
y^{2}=4 a x
$$

$\Rightarrow \frac{1}{\mathrm{QS}}+\frac{1}{\mathrm{PS}}=\frac{1}{\mathrm{a}} \quad$ (by property for focal chord)
$\Rightarrow \frac{1}{\mathrm{k}}+\frac{1}{\mathrm{~b}}=\frac{1}{\mathrm{a}} \quad \quad$ (given $\mathrm{QS}=\mathrm{k}, \mathrm{PS}=\mathrm{b}$)
$\Rightarrow \mathrm{k}=\frac{\mathrm{ab}}{\mathrm{b}-\mathrm{a}}$

Q. 36 (B)

$y^{2}=x$ diameter of system of parallel chords which are parallel to $y=x+1(m=1)$ is $y=\frac{2 a}{m}$
$\Rightarrow \mathrm{y}=\frac{2\left(\frac{1}{4}\right)}{1}=\frac{1}{2}$
Q. 37 (C)
$y^{2}=16 x$
\Rightarrow abscissa is $=4$; means the point is $(4,8)$ or $(4,-8)$

$\Rightarrow \mathrm{L}($ sub tangent $)=\mathrm{NT}$
$\Rightarrow \mathrm{eq}^{\mathrm{n}}$ of tangent at $(4,8)$ is
$\Rightarrow \mathrm{y}(8) 2 \times 8(\mathrm{x}+4)$
$\Rightarrow \therefore \mathrm{y}=2 \mathrm{x}+8$
$\Rightarrow \mathrm{T}(-4,0)$
$\Rightarrow \therefore \mathrm{NT}=8$
Q. 38 (A)
sub-tangent $=$ sub-normal

$\Rightarrow \mathrm{NT}=\mathrm{NG}$
$\Rightarrow\left(2 \mathrm{at}^{2}\right)=2 \mathrm{a}$
$\Rightarrow t= \pm 1$
$\Rightarrow \therefore \mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right) \equiv(\mathrm{a}, \pm 2 \mathrm{a})$
Q. 39 (A)
$y=2 x$
let (α, β) is pole of (1) w.r.t. $y^{2}=2 x$
$\Rightarrow \therefore y \beta=2\left(\frac{1}{2}\right)(x+\alpha)$
$\Rightarrow \mathrm{y} \beta=\mathrm{x}+\alpha$
compare (1) \& (2)
$\Rightarrow \frac{\beta}{1}=\frac{1}{2}=\frac{\alpha}{0}$
$\Rightarrow \alpha=0, \beta=\frac{1}{2}$

Q. 40 (A)

Let pole (h,k) so polar w.r.t circle $x^{2}+y^{2}=r^{2}$ is $x h+y k=r^{2}$
$E q^{n}$ of tangent $y^{2}=4 a x$ is $t y=x+\mathrm{at}^{2}$
(1) \& (2) are same for same value of t so.
$\Rightarrow \frac{\mathrm{h}}{1}=\frac{\mathrm{k}}{\mathrm{-t}}=\frac{-\mathrm{r}^{2}}{\mathrm{at}^{2}}$
$\Rightarrow \mathrm{t}=\frac{-\mathrm{k}}{\mathrm{h}}, \mathrm{t}=\frac{\mathrm{r}^{2}}{\mathrm{ak}}$
$\Rightarrow \therefore \frac{-\mathrm{k}}{\mathrm{h}}=\frac{\mathrm{r}^{2}}{\mathrm{ak}}$
$\Rightarrow \therefore$ locus of (h, k) is $\mathrm{y}^{2}=-\frac{\mathrm{r}^{2}}{\mathrm{a}} \mathrm{x}$

Q. 41 (A)

Ray moving parallel to axis of the parabola then reflected ray has to pass through focus of the parabola.
$\Rightarrow \therefore(\mathrm{y}-2)^{2}=4(\mathrm{x}+1)$
\Rightarrow focus is $S(0,2)$
Q. 42 (A)
$S(a, b), \operatorname{directrix} \frac{x}{a}+\frac{y}{b}=1$
\Rightarrow Apply PS = PM
$\Rightarrow \sqrt{(x-a)^{2}+(y-b)^{2}}=\left|\frac{\frac{x}{a}+\frac{y}{b}-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}\right|$
Q. 43 (A)
$y^{2}=x$
\Rightarrow after interchanging y to $-\mathrm{y}, \mathrm{eq}^{\mathrm{n}}$ of curve remain same so curve is symmetric about x aixs.

Q. 44 (B)

$\mathrm{y}^{2}=16 \mathrm{x}$
$\Rightarrow \mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$
$\Rightarrow 2 \mathrm{at}=2\left(\mathrm{at}^{2}\right) \Rightarrow \mathrm{t}=0,1$
$\Rightarrow \therefore$ Point is $(4,8)$
$\Rightarrow \therefore \mathrm{SP}=\mathrm{PM}=(4+4)=8$
Q. 46 (B)
$y^{2}=\frac{4 x}{5}$
\Rightarrow here $4 \mathrm{a}=\frac{4}{5}$
\Rightarrow so extremities of latus rectum are $(\mathrm{a}, \pm 2 \mathrm{a}) \equiv\left(\frac{1}{5}, \pm \frac{2}{5}\right)$

Q. 47 (C)

vertex $\mathrm{A}(0,0)$
\Rightarrow directricx $x+5=0$
\Rightarrow so a $=5$
$\Rightarrow \therefore$ latus rectum $=4 a=20$
Q. 48 (C)
$y^{2}=6 x$
\Rightarrow vertex $\mathrm{A}(0,0)$
the point, whose abscissa is 24 , are $(24, \pm 12)$
$\Rightarrow \therefore \mathrm{eq}^{\mathrm{n}}$ of line is $\mathrm{y}= \pm \frac{1}{2} \mathrm{x}$

Q. 49 (A)

$y^{2}=4 a x$

$\Rightarrow \frac{\mathrm{PR}}{\mathrm{RQ}}=\frac{1}{2}$
$\Rightarrow \therefore \mathrm{h}=\mathrm{at}^{2}, \mathrm{k}=\frac{2(2 \mathrm{at})+1(-2 \mathrm{at})}{3}=\frac{2 \mathrm{at}}{3}$
$\Rightarrow \therefore \mathrm{h}=\mathrm{a}\left[\frac{3 \mathrm{k}}{2 \mathrm{a}}\right)^{2}$
$\Rightarrow 4 \mathrm{ah}=9 \mathrm{k}^{2}$
So locus is $9 \mathrm{y}^{2}=4 \mathrm{ax}$
Q. 50 (B)
$\sqrt{(x-2)^{2}+(y+5)^{2}}=\left|\frac{3 x+4 y-1}{5}\right|$
$\Rightarrow \therefore \mathrm{PS}=\mathrm{PM}$ where S is focus $\& \mathrm{M}$ is perpendicular on directrix.
so locus of P is parabola where $5(2,-5)$
Q. 51 (A)
$y^{2}=8 x$
$\Rightarrow \mathrm{S}(2,0)$ if $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ the $\mathrm{SP}=\mathrm{a}+\mathrm{at}{ }^{2}$
$\Rightarrow 4=2\left(1+\mathrm{t}^{2}\right)$
$\Rightarrow \mathrm{t}= \pm 1$
$\Rightarrow \therefore \mathrm{P}(2, \pm 4)$
Q. 52 (C)
$\mathrm{S}(-3,0)$ directric is $\mathrm{x}+5=0$
$\Rightarrow \therefore \mathrm{eq}^{\mathrm{n}}$ of parabola is
$\Rightarrow \sqrt{(x+3)^{2}+y^{2}}=\left|\frac{x+5}{1}\right|$
$\Rightarrow y^{2}=4 a x$
Q. 53 (A)
$y^{2}=4 a x$

eq^{n} of AB is $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$
$\Rightarrow \therefore \mathrm{eq}{ }^{\mathrm{n}}$ of pair of straight line $\mathrm{OA} \& \mathrm{OB}$ is given by homogenization
\Rightarrow So, $\left(y^{2}-4 a x\left(\frac{1 x+m y}{-n}\right)\right)=0$
Angle between lines is 90° so
$\Rightarrow\left(\frac{4 \mathrm{al}}{\mathrm{n}}\right)+1=0$
Q. 55 (A)
$y^{2}=4 a x$
$e q^{n}$ of tangent m slope form is
$\Rightarrow \mathrm{y}=\mathrm{mx}+\frac{\mathrm{a}}{\mathrm{m}} \quad \&$ this tangent passes through $(0,2)$ then
$\Rightarrow 2=\frac{\mathrm{a}}{\mathrm{m}}$

$\Rightarrow \mathrm{m}_{2}=\infty, \theta=\frac{3 \pi}{4}$
\Rightarrow So, $\mathrm{m}_{1}=\tan \left(\frac{\pi}{4}\right)=1$; put this value of m in eq.(1)
$\Rightarrow \therefore \mathrm{a}=2$
Q. 56 (C)

Point of intersection of tangents to $y^{2}=4 x$ is $\left(a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right)$
$\Rightarrow(1(1)(2), 1(1+2))=(2,3)$
Q. 57 (D)
$y^{2}=4(x-1)$
$\Rightarrow \mathrm{eq}^{\mathrm{n}}$ tangent is $\mathrm{y}=\mathrm{m}(\mathrm{x}-1)+\frac{1}{\mathrm{~m}} \&$ it passes through $(0,0)$
So $0=m(-1)+\frac{1}{m}$
$\Rightarrow 0=-\mathrm{m}^{2}+1$
$\Rightarrow \mathrm{m}= \pm 1$
So angle between tangents $=\frac{\pi}{2}$
Q. 58 (B)

$$
\begin{aligned}
& y^{2}-4 x=0 \\
& \Rightarrow(S)_{(0,-2)}=4-0>0
\end{aligned}
$$

So point lies outside so 2 real \& distinct tangents can be drawn.

Q. 59 (B)

$y^{2}=4 a x$
$\Rightarrow \mathrm{eq}^{\mathrm{n}}$ tangent in slop form $\mathrm{y}=\mathrm{mx}+\frac{\mathrm{a}}{\mathrm{m}}$
tangents are drawn from (α, β) so
$\Rightarrow \beta=\mathrm{m} \alpha+\frac{\mathrm{a}}{\mathrm{m}}$
$\Rightarrow \alpha \mathrm{m}^{2}-\beta \mathrm{m}+\mathrm{a}=0$
$\Rightarrow \mathrm{m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{\alpha}, \mathrm{m}_{1}+\mathrm{m}_{2}=\frac{\beta}{\alpha}$
given that $\mathrm{m}_{1}=2 \mathrm{~m}_{2}$
So, $3 \mathrm{~m}_{2}=\frac{\beta}{\alpha}$
$\Rightarrow \mathrm{m}_{2}=\frac{\beta}{3 \alpha}$
So, m_{2} satisfy eq ${ }^{\mathrm{n}}$ (2)
$\Rightarrow \alpha\left(\frac{\beta}{3 \alpha}\right)^{2}-\beta\left(\frac{\beta}{3 \alpha}\right)+\mathrm{a}=0$
$\Rightarrow \beta^{2}-3 \beta^{2}+9 \mathrm{a} \alpha=0$
$\Rightarrow 2 \beta^{2}=9 \mathrm{a} \alpha$
Q. 60 (C)
$y+b=m_{1}(x+a)$
$\Rightarrow \mathrm{y}+\mathrm{b}=\mathrm{m}_{2}(\mathrm{x}+\mathrm{a})$
$e q^{\mathrm{n}}(1) \&(2)$ are tangents to the parabola $y^{2}=4 a x$
both tangents are drawn from $(-\mathrm{a},-\mathrm{b})$
which lies on $\mathrm{x}=-\mathrm{a}$, so tangents drawn from $(-\mathrm{a},-\mathrm{b})$ has to be perpendicular so $\mathrm{m}_{1} \mathrm{~m}_{2}-1$

Q. 61

$y^{2}=4 a(x+a)$
eq^{n} of tangent in slope form is
$\Rightarrow y=m(x+a)+\frac{a}{m}$
$\Rightarrow \mathrm{y}=\mathrm{mx}+\mathrm{c}$
$\Rightarrow \therefore \mathrm{c}=\mathrm{am}+\frac{\mathrm{a}}{\mathrm{m}}$
Q. 62 (B)
$y^{2}=4 a x$
$\Rightarrow(-\mathrm{a}, 2 \mathrm{a})$ lies on directrix $\mathrm{x}=-\mathrm{a}$ of the parabola.
So, tangents drawn from it are perpendicular

Q. 63 (B)

Intersection point of tangents $\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right]$, which lies on axis $\mathrm{y}=0$ if $\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=0$
$\Rightarrow \mathrm{So}, \mathrm{t}_{1}=-\mathrm{t}_{2}$
Q. 64 (D)
$y^{2}=4 a x$
$e q^{n}$ of tangents $t y=x+a t^{2}$
$\Rightarrow \mathrm{x}-\mathrm{ty}+\mathrm{at}^{2}=0$
$\Rightarrow \mathrm{p}_{1}=\left|\frac{(\mathrm{a}+\mathrm{k})-0+\mathrm{at}^{2}}{\sqrt{1+\mathrm{t}^{2}}}\right|$
$\Rightarrow \mathrm{p}_{2}=\left|\frac{(\mathrm{a}-\mathrm{k})-0+\mathrm{at}^{2}}{\sqrt{1+\mathrm{t}^{2}}}\right|$
$\Rightarrow \therefore \mathrm{p}_{1}^{2}-\mathrm{p}_{2}^{2}=4 \mathrm{ak}$

Q. 65 (A)

$k x+y=4$
$\Rightarrow \mathrm{y}=\mathrm{x}-\mathrm{x}^{2}$
(1) touches parabola (2) then

$$
\begin{aligned}
& \Rightarrow(4-\mathrm{kx})=\mathrm{x}-\mathrm{x}^{2} \\
& \Rightarrow \mathrm{x}^{2}-\mathrm{x}(\mathrm{k}+1)+4=0 \\
& \Rightarrow \because \mathrm{x}_{1}=\mathrm{x}_{2} \\
& \Rightarrow \therefore \mathrm{D}=0 \\
& \Rightarrow(\mathrm{k}+1)^{2}-16=0 \\
& \Rightarrow \mathrm{k}=3,-5
\end{aligned}
$$

Q. 66 (A)
$y^{2}=4 a x$
$\Rightarrow \mathrm{x}^{2}=4 \mathrm{by}$
eq ${ }^{\mathrm{n}}$ of tangent for (1)
$\Rightarrow t y=x+\mathrm{at}^{2}$
$\Rightarrow \therefore \mathrm{x}^{2}=4 \mathrm{~b}\left(\frac{\mathrm{x}+\mathrm{at}^{2}}{\mathrm{t}}\right)$
$\Rightarrow \mathrm{tx}^{2}-4 \mathrm{bx}-4 \mathrm{abt}^{2}=0$
$\Rightarrow \mathrm{D}=0$
$\Rightarrow 16 b^{2}+4(4 a b) t^{3}=0$
$\Rightarrow \mathrm{t}^{3}=-\frac{\mathrm{b}}{\mathrm{a}}$
$\Rightarrow t=-\frac{b^{\frac{1}{3}}}{a^{\frac{1}{3}}}$
So eq ${ }^{\mathrm{n}}$ of tangent is
$\Rightarrow x+\frac{b^{\frac{1}{3}}}{a^{\frac{1}{3}}} y+a\left(\frac{b^{\frac{2}{3}}}{a^{\frac{2}{3}}}\right)=0$
$\Rightarrow a^{\frac{1}{3}} x+b^{\frac{1}{3}} y+a^{\frac{2}{3}} b^{\frac{2}{3}}=0$

Q. 67

(A)
$\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$
$\Rightarrow \mathrm{y}=-\cot \alpha \mathrm{x}+\mathrm{p} \operatorname{cosec} \alpha$
$\Rightarrow y^{2}=4 a(x+a)$
tangent in slope form is $y=m(x+a)+\frac{a}{m}$
$\Rightarrow \therefore \mathrm{p} \operatorname{cosec} \alpha=\mathrm{am}+\frac{\mathrm{a}}{\mathrm{m}}$
$\Rightarrow \mathrm{p} \operatorname{cosec} \alpha=\mathrm{a}(-\cot \alpha)-\mathrm{a} \tan \alpha$
$\Rightarrow \mathrm{p} \cot \alpha+\mathrm{a}=0$
Q. 68 (C)
$x+y=1$
\Rightarrow line (1) touches $y^{2}-y+x=0$
$\Rightarrow \mathrm{y}^{2}-\mathrm{y}+(1-\mathrm{y})=0$
$\Rightarrow(\mathrm{y}-1)^{2}=0$
$\Rightarrow \mathrm{y}=1$
$\Rightarrow \mathrm{So}, \mathrm{x}=0$
Point of contact is $(0,1)$

Q. 69 (B)

$$
\begin{align*}
& x^{2}+y^{2}=2 \tag{1}\\
& \Rightarrow y^{2}=8 x \tag{2}
\end{align*}
$$

eq^{n} of tangent for (2) is
$\Rightarrow t y=x+2 t^{2}$
$\Rightarrow \mathrm{x}-\mathrm{ty}+2 \mathrm{t}^{2}=0$
line (3) touches circle (1) then

$$
\begin{aligned}
& \Rightarrow\left|\frac{0-0+2 \mathrm{t}^{2}}{\sqrt{1+\mathrm{t}^{2}}}\right|=\sqrt{2} \\
& \Rightarrow\left(2 \mathrm{t}^{2}\right)^{2}=2+2 \mathrm{t}^{2} \\
& \Rightarrow 2 \mathrm{t}^{4}-\mathrm{t}^{2}-1=0 \\
& \Rightarrow \mathrm{t}^{2}=1 \\
& \Rightarrow \mathrm{t}= \pm 1
\end{aligned}
$$

so eq ${ }^{\mathrm{n}}$ of tangents are
$\Rightarrow 2 \pm y+2=0$

