
Solutions 

PARABOLA 

Ex. 3 
 

Q.1 

Let P be (h, k). Also let tangents from P be , where points of contact of 

these tangents being . 

Now point of intersection of tangents will be . Area of triangle PQR will now 

be given by 

 which implies . 

But , hence  

Required locus is  which is a parabola. 

 

Q.2 

Let P & Q be , then  

Now  or  

. But  by . 

. Hence . 

 

Q.3 

If normal at  meet on the parabola, then  

Also P,Q,R & N(point of intersection of normals) will form a cyclic quadrilateral and circle passing 

through P, Q & R will have RN as diameter as . 

Now coordinates of R will be  or . Similarly coordinates of N will be 

 or  

Now let the circum center be (h, k), then 

  

Or eliminating t gives & replacing (h, k) with (x, y) gives required locus as . 
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Q.4 

Substituting  in  gives  

Now for four distinct points of intersection the above equation must have four distinct real roots. 

As the given equation is a biquadratic so considering x2 = t gives a quadratic in  t  both of whose 

roots must be real & positive. 

Hence  must be of same sign and . 

. 

Clearly if a > b > 1, then all the above conditions get satisfied. 

(remember here that a > b > 1 is a sufficient condition and may not be necessary) 

 

Q.5 

Let P, Q, P’& Q’ be . 

Now PQ is a focal chord & PP’, QQ’ are normal chords hence . 

Slope of PQ =  . Similarly  

Slope of P’Q’= , hence PQ is parallel to P’Q’. 

Also  & P’Q’ =   

, hence P’Q’ = 3 PQ. 

 

Q.6 

Let the fixed point on axis be P(h, 0), then any line passing through this point will be y = m(x – h). 

Substituting 
 
at2 ,2at( )  this gives  amt2 - 2at - hm = 0. 
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Now if we consider two such circles with m = m1 & m = m2, then radical axis of these circles will be 
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Clearly it passes through the origin. 
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 y = ax2 - b  x
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Comparing P(16, 16) with 
 
4t2 ,8t( ) gives t = 2. 

Now tangent at P will be 2y = x + 16 & normal at P will be 2x + y = 48. 

Points where these lines meet the x-axis will be A(-16, 0) & B(24, 0). 

As angle APB is a right angle hence the circle passing through P, A & B will have AB as diameter. 

Hence 
 
C

1
: x +16( ) x - 24( )+ y2 = 0. 

Equation of common chord of C1 & C2 will be  6x + y+197 = 0. 
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Let  l = at2 &m = 2at. Now vertices of the triangle are 
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As the triangle is right angled hence by the concept of Euler’s line its circum center (x, y) will be 
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Þ x = 4a y - 6( ) y - 4( ), which is equation of a parabola. 

 

Q.9 

Any tangent to 
 
y2 = 4ax will be y = mx +

a

m
 and any normal to 
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b
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Q.11 

Let the point K be (h,0) and slope of chord through K be tan , then any point on this line at a 

distance r from K will be (h + r cos , r sin ).  

For r = PK & r = QK, this point will satisfy the equation of parabola, hence by substituting these 

coordinates in the equation of the parabola we get 
 
sin2 q( )r2 - 4acosq( )r - 4ah = 0. 

Roots of this equation are PK & -QK, hence PK – QK = 
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Any tangent to 
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Arranging both the equations as quadratic equations in m gives  

 
bm2 + my + x + b = 0 & x + a( )m2 - ym + a = 0. 
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Now combining 
 
y2 = 4a x + a( ) & y2 = 4b x + b( )  in order get a linear equation we get common chord 

as x + a + b = 0. 
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Let the fixed parabola be 
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hm2 - km + 2a = 0 & k2 - 4ah( )m2 - 4akm +8a2 = 0. 

Comparing the two equations in order to eliminate m gives 
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h
= 4a or k2 = 8ah, hence required locus is 
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2 = 8ax . 

 

Q.14 

Adding the two equations gives 
 
x2 + 6x - 4y +13= 0 or x + 3( )

2

= 4 y -1( ), which means each of the 

points A, B, C & D lie on a parabola with vertex at (-3, 1) and focus at P(-3, 2). 

Hence PA, PB, PC, PD will be focal distances of these points. 

Now let any point on this parabola be 
 
2t - 3,t2 +1( ) . Substitute these coordinates in the equation 
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Normal to 
 y

2 = 4ax  at any point P(t) will be 
 tx + y = 2at + at3. 

This will meet the x-axis at Q
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The line perpendicular to normal and passing through Q will be 
 x - ty = 2a + at2 . 

Now this equation may be rearranged as 
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Let mid point of any such chord be M
 
at2 ,2at( ) . 

Now using T = S1, equation of chord of 
 x

2 + y2 = 16a2 having mid point at M may be represented as 

 at2x + 2aty = a2t4 + 4a2t2. 

As this chord is drawn through (h, 0) hence substituting these coordinates in equation of chord we 

get 
 at2x + 2aty = a2t4 + 4a2t2. 

Now the above equation gives three values of t, namely 
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(i)  Let P, Q & R be the vertices of a triangle formed by three tangents of 
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(Here take care to put slopes in same cyclic order to get correct angles) 

Clearly 
 a &b  are supplementary angles, hence PQFR is a cyclic quadrilateral. 

(ii)  Altitude through P must be perpendicular to tangent QR, hence its slope will be 
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Any circle touching the parabola at P(t) will also touch the tangent to parabola at P. 

Now any circle touching the line 
 y = tx + at2  at P may be represented as family of point circle having 

center at P and the line PB i.e. 
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Equation of line joining (1, 0) & (0, 2) is 2x + y = 2. 

Now any curve having  xy = 0 as pair of tangents and 2x + y – 2 = 0 as chord of contact may be 
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Or  FM = h + a = QN. 
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We can get the solution by first consider a fixed parabola touching the coordinate axes and then 

rotating it by an angle q .  

One such parabola is 
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2 = 4by , then 

 

2at
1
t

2

t
1
+ t

2

= -b
2

t
1
+ t

2

æ

è
ç

ö

ø
÷

2

or at
1
t

2
t
1
+ t

2( ) = -2b . 

Similarly if the second line is a tangent then 
 
at

2
t

3
t

2
+ t

3( ) = -2b. 

Now from these two conditions we get 
 
t
1
+ t

2
+ t

3
= 0 & t

2
t

3
t
1
=

2b

a
. 

Further 

 

at
3
t
1

t
3
+ t

1( ) = a ´
2b

at
2

´ -t
2( ) = -2b, hence the third line also touch 

 x
2 = 4by . 

 

Q.24 

If the triangle is equilateral, then its centroid will be same as circum center. 

Let the vertices be 
 
at

1

2 ,2at
1( ), at

2

2 ,2at
2( ), at

3

2 ,2at
3( ) . 

Centroid will be 
 
h =

a t
1

2 + t
2

2 + t
3

2( )
3

& k =
2a t

1
+ t

2
+ t

3( )
3

. 

Now consider the circle 
 x

2 + y2 - 2hx - 2ky + c = 0 and put 
 
at2 ,2at( )  in this equation to get 

 
a2t4 + 2a 2a - h( ) t2 - 4akt + c = 0. 

Now if this is the circum circle of triangle PQR, then 
 
t
1
, t

2
, t

3
 will be three of its roots. 

Using relations in roots and coefficients we get 

 
t
1
+ t

2
+ t

3
+ t

4
= 0,t

1
t

2
+ t

1
t

3
+ t

1
t

4
+ t

2
t

3
+ t

2
t

4
+ t

3
t

4
=

2 2a - h( )
a

& 

 
t
1
t

2
t

3
+ t

2
t

3
t

4
+ t

3
t

4
t
1
+ t

4
t
1
t

2
=

4k

a
. 

Also 
 
h =

a t
1

2 + t
2

2 + t
3

2( )
3

& k =
2a t

1
+ t

2
+ t

3( )
3

 gives 
 
t

4
= -

3k

2a
 & 

 
t
1
t

2
+ t

1
t

3
+ t

1
t

4
=

12ah - 9k2

8a2
 

Now from 
 
t
1
t

2
+ t

1
t

3
+ t

1
t

4
+ t

2
t

3
+ t

2
t

4
+ t

3
t

4
=

2 2a - h( )
a

 we get  

 
t
1
t

2
+ t

2
t

3
+ t

3
t
1
+ t

1
+ t

2
+ t

3( ) t
4

=
2 2a - h( )

a
. 

Substituting the values gives  4ah - 9k2 - 32a2 = 0 . 

Hence locus of centroid of triangle PQR is 
 9y2 - 4ax + 32a2 = 0 . 

 

 

 



Q.25 

Let extremities of the focal chord be 

 

P at2 ,2at( ),Q
a

t2
,-

2a

t

æ

èç
ö

ø÷
.  

Point of intersection of tangents at P & Q will be 

 

R -a,2a t -
1

t

æ

èç
ö

ø÷
æ

èç

ö

ø÷
. 

Now area of triangle PQR will be  

 

1

2

1 at2 2at

1
a

t2
-

2a

t

1 -a a t -
1

t

æ

èç
ö

ø÷

 i.e.

 

a2

2
t2 +

1

t2
+ 2

æ

èç
ö

ø÷
t +

1

t
. 

Similarly area of triangle OPQ will be  

 

1

2

1 at2 2at

1
a

t2
-

2a

t

1 0 0

 i.e. 

 

a2 t +
1

t
. 

Now ratio of these two area will be 

 

1

2
t2 +

1

t2

æ

èç
ö

ø÷
+1. 

 

Q.26 

Let slope of the variable line be  tanq . 

Now any point on this line at a distance r from P(a, b) will be 
 
a + rcosq,b + rsinq( ) .  

These coordinates will satisfy 
 y

2 = 4cx  for r = PA & r = PB. 

Hence 
 
b + rsinq( )

2

= 4c a + rcosq( )  i.e. 
 
sin2 q( )r2 + 2bsinq- 4ccosq( )r + b2 - 4ac = 0  will have PA 

&  PB as roots. Now 

 
PA + PB =

4ccosq - 2bsinq

sin2 q
& PA ´ PB =

4ac - b2

sin2 q
. 

As given PA, PQ, PB are in H.P., hence 
 
PQ =

2 ´ PA ´ PB

PA + PB
Þ PQ =

2 4ac - b2( )
4ccosq - 2bsinq

. 

Now let coordinate of Q be (x, y), then  

 

x = a + PQcosq & y = b + PQsinq Þ cosq =
x - a

PQ
&sinq =

y - b

PQ
. 

Substituting these in the expression of PQ we get 

 

PQ =
2 4ac - b2( )

4c x - a( ) - 2b y - b( )
PQ 

or 
 2cx - by = 6ac - 2b2 . 

Hence locus of Q is a fixed straight line. 

 

Q.27 

Foot of perpendicular from the focus F on tangent at P will lie on y-axis, hence let P, F & M be 

 
at2 ,2at( ), a,0( ) & 0,at( ) . 

Now area of triangle PFM will be 



 

1

2

1 at2 2at

1 a 0

1 0 at

=
a2

2
t3 + t( ) . 

Now range of  t  is  0 to 1.  

Maximum area will be for t = 1 i.e. maximum area =  a
2 . 

 

Q.28 

Let mid point of any such chord be M
 
at2 ,2at( ) . 

Now using T = S1, equation of chord of 
 x

2 + y2 = 16a2 having mid point at M may be represented as 

 at2x + 2aty = a2t4 + 4a2t2. 

As this chord is drawn through (h, 0) hence substituting these coordinates in equation of chord we 

get 
 at2x + 2aty = a2t4 + 4a2t2. 

Now the above equation gives three values of t, namely 

 
0 & ±

h - 4a

a2
 out of which the later two 

values will be real & other than 0 only if h > 4a. 

Also for M to be mid point of chord it must lie inside the circle hence  

 

a2t4 + 4a2t2 -16a2 < 0 or
4a - h

a2

æ

èç
ö

ø÷

2

+ 4
4a - h

a2

æ

èç
ö

ø÷
-16 < 0, hence 

 
h < 5 +1( )2a . 

 

Q.29 

Reflection at a point P on any curved surface take place such that incident ray and reflected are 

reflections of each other in the normal to the curve at P. 

Now y = b meets 
 y

2 = 4ax  at point P

 

b2

4a
,b

æ

èç

ö

ø÷
. Comparing this with 

 
at2 ,2at( )  gives 

 
t =

b

2a
. 

Normal to the parabola at this point will be  

 

b

2a
x + y = 2a

b

2a
+ a

b

2a

æ

èç
ö

ø÷

3

 or 
 4abx +8a2y = 8a2b+ b3. 

Now slope of normal is 
 
-

b

2a
 and y = b is parallel to x-axis so if q  is the angle between the incident 

ray and normal, then 
 
tanq = -

b

2a
. 

Reflected ray will make an angle  2q  with y = b, hence slope of reflected ray will be 

 
tan2q =

2tanq

1- tan2 q
=

4ab

4a2 - b2
. 

Equation of the reflected ray : 

 

y - b =
4ab

4a2 - b2
x -

b2

4a

æ

èç

ö

ø÷
 or 

 
4abx + 4a2 - b2( )y = 4a2b. 

Clearly (a, 0) satisfies this equation. 

 

Q.30 

If the triangle is equilateral, then its centroid will be same as circum center. 

Let the vertices be 
 
at

1

2 ,2at
1( ), at

2

2 ,2at
2( ), at

3

2 ,2at
3( ) . 

Centroid will be 
 
h =

a t
1

2 + t
2

2 + t
3

2( )
3

& k =
2a t

1
+ t

2
+ t

3( )
3

. 



Now consider the circle 
 x

2 + y2 - 2hx - 2ky + c = 0 and put 
 
at2 ,2at( )  in this equation to get 

 
a2t4 + 2a 2a - h( ) t2 - 4akt + c = 0. 

Now if this is the circum circle of triangle PQR, then 
 
t
1
, t

2
, t

3
 will be three of its roots. 

Using relations in roots and coefficients we get 

 
t
1
+ t

2
+ t

3
+ t

4
= 0,t

1
t

2
+ t

1
t

3
+ t

1
t

4
+ t

2
t

3
+ t

2
t

4
+ t

3
t

4
=

2 2a - h( )
a

& 

 
t
1
t

2
t

3
+ t

2
t

3
t

4
+ t

3
t

4
t
1
+ t

4
t
1
t

2
=

4k

a
. 

Also 
 
h =

a t
1

2 + t
2

2 + t
3

2( )
3

& k =
2a t

1
+ t

2
+ t

3( )
3

 gives 
 
t

4
= -

3k

2a
 & 

 
t
1
t

2
+ t

1
t

3
+ t

1
t

4
=

12ah - 9k2

8a2
 

Now from 
 
t
1
t

2
+ t

1
t

3
+ t

1
t

4
+ t

2
t

3
+ t

2
t

4
+ t

3
t

4
=

2 2a - h( )
a

 we get  

 
t
1
t

2
+ t

2
t

3
+ t

3
t
1
+ t

1
+ t

2
+ t

3( ) t
4

=
2 2a - h( )

a
. 

Substituting the values gives  4ah - 9k2 - 32a2 = 0 . 

Hence locus of centroid of triangle PQR is 
 9y2 - 4ax + 32a2 = 0 . 

 

Q.31 

Given data implies that point of intersection of two normal lies on the parabola. 

Let a normal be drawn at P(), then its equation will be 
 lx + y = 2al + al3. 

If it passes through 
 
at2 ,2at( ) , then  lat2 + 2at = 2al + al3. 

 
Þ al t2 - l2( ) + 2a t - l( ) = 0 or  l

2 + lt + a = 0. 

 

Q.32 

Let the points on parabola be 
 
A at

1

2 ,2at
1( ),B at

2

2 ,2at
2( ) &C at

3

2 ,2at
3( ). 

Points of intersection of tangents at these points will be  

 
P at

1
t

2
,a t

1
+ t

2( )( ),Q at
2
t

3
,a t

2
+ t

3( )( ) & R at
3
t
1
,a t

3
+ t

1( )( ). 

Now 

 

Area of DABC =
1

2

1 at
1

2 2at
1

1 at
2

2 2at
2

1 at
3

2 2at
3

 &

 

Area of DPQR =
1

2

1 at
2
t

3
a t

2
+ t

3( )
1 at

3
t
1

a t
3
+ t

1( )
1 at

1
t

2
a t

1
+ t

2( )

. 

Now take the second determinant, 

(i) Subtract 
 
a t

1
+ t

2
+ t

3( ) from third column to get 

 

Area of DPQR =
1

2

1 at
2
t

3
-at

1

1 at
3
t
1

-at
2

1 at
1
t

2
-at

3

. 

(ii) Multiply first row by 
 
t

1
, second by 

 
t

2
 & third by 

 
t

3
 and take 

 
t
1
t

2
t

3
 common from second 

column. Also take a common from second column and multiply 2a to first column to get 



 

Area of DPQR =
1

4

2at
1

1 at
1

2

2at
2

1 at
2

2

2at
3

1 at
3

3

. 

(iii) Now interchange first column with second and then second with third to get 

 

Area of DPQR =
1

4

1 at
1

2 2at
1

1 at
2

2 2at
2

1 at
3

3 2at
3

=
1

2
Area of DABC . 

 

Q.33 

Let the points be 
 
P at

1

2 ,2at
1( ) &Q at

2

2 ,2at
2( ), where as given 

 
t

2
= 2t

1
. 

Now point of intersection of normal at P & Q will be 

 
x = a t

1

2 + t
2

2 + t
1
t

2
+ 2( ) & y = -at

1
t

2
t
1
+ t

2( )  

Now 
 
t

2
= 2t

1
Þ x - 2a = 7at

1

2 & y = -6at
1

3. 

Eliminating 
 
t

1
 gives 

 
36 x - 2a( )

3

= 243ay2 . 

 

Q.34 

Let the points be 
 
P at

1

2 ,2at
1( ) &Q at

2

2 ,2at
2( ), where as given 

 
t
1
t

2
= -1. 

Now point of intersection of normal at P & Q will be 

 
x = a t

1

2 + t
2

2 + t
1
t

2
+ 2( ) & y = -at

1
t

2
t
1
+ t

2( ) . 

Now 
 
t
1
t

2
= -1 gives 

 
x = a t

1

2 + t
2

2 +1( ) & y = a t
1
+ t

2( ) . 

Eliminating 
 
t

1
 &  

 
t

2
 gives 

 
a x - 3a( ) = y2 . 

 

Q.35 

Let the points be 
 
P at

1

2 ,2at
1( ) &Q at

2

2 ,2at
2( ), where as given 

 
t
1
t

2
= 2 . 

Now mid point of P & Q will be
 
x =

a t
1

2 + t
2

2( )
2

& y = a t
1
+ t

2( ) . 

Now 
 
t
1
t

2
= 2  gives 

 
2x + 4a = a t

1
+ t

2( )
2

& y = a t
1
+ t

2( ). 

Eliminating 
 
t

1
 &  

 
t

2
 gives 

 
2a x + 2a( ) = y2 . 

 


