Solutions

PARABOLA

Ex. 3

Q. 1

Let P be (h, k). Also let tangents from P be $t_{1} y=x+a t_{1}{ }^{2} \& t_{2} y=x+a t_{2}{ }^{2}$, where points of contact of these tangents being $\mathrm{Q}\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{a}_{1}\right) \& \mathrm{R}\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{a}_{2}\right)$.
Now point of intersection of tangents will be $h=\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{k}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$. Area of triangle PQR will now be given by
$\frac{1}{2}\left\|\begin{array}{ccc}1 & \mathrm{at}_{1}{ }^{2} & 2 \mathrm{at}_{1} \\ 1 & \mathrm{at}_{2}{ }^{2} & 2 \mathrm{at}_{2} \\ 1 & \mathrm{at}_{1} \mathrm{t}_{2} & \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\end{array}\right\|=4 \mathrm{a}^{2}$ which implies $\left(\mathrm{t}_{1} \mathrm{t}_{2}\right)^{2}=4$.
But $h=a t_{1} t_{2}, k=a\left(t_{1}+t_{2}\right) \quad a^{2}\left(t_{1} \quad t_{2}\right)^{2}=k^{2} \quad 4 a h$, hence $k^{2} \quad 4 a h=16 a^{2}$.
Required locus is $y^{2}=4 a\left(\begin{array}{ll}x & 4 a\end{array}\right)$ which is a parabola.

Q. 2

Let $P \& Q$ be $\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}{ }_{1}\right) \&\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}{ }_{2}\right)$, then $\mathrm{t}_{2}=\mathrm{t}_{1} \frac{2}{\mathrm{t}_{1}}$.
Now $O Q^{2}=a\left(t_{2}{ }^{4}+4 t_{2}{ }^{2}\right)$ or $O Q^{2}=a^{2}\left(\left(t_{1}+\frac{2}{t_{1}}\right)^{4}+4\left(t_{1}+\frac{2}{t_{1}}\right)^{2}\right)$
$\Rightarrow O Q^{2}=\mathrm{a}^{2}\left(\left(\mathrm{t}_{1}+\frac{2}{\mathrm{t}_{1}}\right)^{2}+2\right)^{2} 4 \mathrm{a}^{2}$. But by A.M. G.M., $\left|\mathrm{t}_{1}+\frac{2}{\mathrm{t}_{1}}\right| \quad 2 \sqrt{2}$.
$\Rightarrow\left(\left(t_{1}+\frac{2}{t_{1}}\right)^{2}+2\right)^{2} \geq 100$. Hence $|\mathrm{OQ}| \quad 4 a \sqrt{6}$.

Q. 3

If normal at $P\left(t_{1}\right) \&\left(t_{2}\right)$ meet on the parabola, then $t_{1} t_{2}=2$.
 through $\mathrm{P}, \mathrm{Q} \& \mathrm{R}$ will have RN as diameter as $\mathrm{RPN}=\frac{-}{2}$.
Now coordinates of R will be $\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$ or $\left(2 \mathrm{a}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$. Similarly coordinates of N will be $\left(\mathrm{a}\left(\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+\mathrm{t}_{1} \mathrm{t}_{2}+2\right), \quad \mathrm{at}_{1} \mathrm{t}_{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$ or $\left(\mathrm{a}\left(\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+4\right), 2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$
Now let the circum center be (h, k), then
$\mathrm{h}=\frac{\mathrm{a}\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}+6\right)}{2} \& \mathrm{k}=\frac{\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)}{2} \quad \frac{2 \mathrm{~h}}{\mathrm{a}} \quad 6=\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2} \& \frac{4 \mathrm{k}^{2}}{\mathrm{a}^{2}}=\mathrm{t}_{1}^{2}+\mathrm{t}_{2}{ }^{2}+2 \mathrm{t}_{1} \mathrm{t}_{2}$
Or eliminating t gives \& replacing (h, k) with (x, y) gives required locus as $2 y^{2}=a\left(\begin{array}{ll}x & a\end{array}\right)$.

Q. 4

Substituting $y=a x^{2} \quad b$ in $x^{2}+y^{2}=1$ gives $x^{2}+\left(\begin{array}{ll}a x^{2} & b\end{array}\right)^{2}=1 \quad$ or $\quad a^{2} x^{4}+\left(\begin{array}{ll}1 & 2 a b\end{array}\right) x^{2}+b^{2} \quad 1=0$.
Now for four distinct points of intersection the above equation must have four distinct real roots.
As the given equation is a biquadratic so considering $x^{2}=t$ gives a quadratic in t both of whose roots must be real \& positive.
Hence $\mathrm{a}^{2}, 2 \mathrm{ab} \quad 1, \mathrm{~b}^{2} \quad 1$ must be of same sign and $\left(\begin{array}{ll}1 & 2 \mathrm{ab}\end{array}\right)^{2}>4 \mathrm{a}^{2}\left(\begin{array}{ll}\mathrm{b}^{2} & 1\end{array}\right)$.

$$
2 \mathrm{ab}>1, \mathrm{~b}>1,4 \mathrm{a}^{2} \quad 4 \mathrm{ab}+1>0
$$

Clearly if $\mathrm{a}>\mathrm{b}>1$, then all the above conditions get satisfied.
(remember here that $\mathrm{a}>\mathrm{b}>1$ is a sufficient condition and may not be necessary)

$$
\text { Q. } 5
$$

Let P, Q, P'\& Q' be $\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right),\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right),\left(\mathrm{at}_{3}{ }^{2}, 2 \mathrm{at}_{3}\right) \&\left(\mathrm{at}_{4}{ }^{2}, 2 \mathrm{at}_{4}\right)$.
Now $P Q$ is a focal chord \& PP', QQ' are normal chords hence $t_{2}=\frac{1}{t_{1}}, t_{3}=t_{1} \frac{2}{t_{1}} \& t_{4}=\frac{1}{t_{1}}+2 t_{1}$.
Slope of $\mathrm{PQ}=\frac{2 \mathrm{t}_{1} \quad 2 \mathrm{t}_{2}}{\mathrm{t}_{1}{ }^{2} \quad \mathrm{t}_{2}{ }^{2}}$ or $\frac{2 \mathrm{t}_{1}}{\mathrm{t}_{1}{ }^{2} 1}$. Similarly
Slope of $P^{\prime} Q^{\prime}=\frac{2 t_{4}-2 t_{3}}{t_{4}{ }^{2} \quad t_{3}{ }^{2}}$ or $\frac{2 t_{1}}{t_{1}{ }^{2} 1}$, hence $P Q$ is parallel to $P^{\prime} Q^{\prime}$.
Also $P Q=a\left(t_{1}+\frac{1}{t_{1}}\right)^{2} \& P^{\prime} Q^{\prime}=a \sqrt{\left(t_{3}{ }^{2} t_{4}{ }^{2}\right)^{2}+4\left(t_{3} \quad t_{4}\right)^{2}}$ or $a\left|t_{3} \quad t_{4}\right| \sqrt{\left(t_{3}+t_{4}\right)^{2}+4}$
$\Rightarrow P^{\prime} Q^{\prime}=3 a\left(t_{1}+\frac{1}{t_{1}}\right)^{2}$, hence $P^{\prime} Q^{\prime}=3 P Q$.

Q. 6

Let the fixed point on axis be $P(h, 0)$, then any line passing through this point will be $y=m(x-h)$.
Substituting $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ this gives $\mathrm{amt}^{2} \quad 2 \mathrm{at} \mathrm{hm}=0$.
$\mathrm{t}_{1}+\mathrm{t}_{2}=\frac{2}{\mathrm{~m}} \& \mathrm{t}_{1} \mathrm{t}_{2}=\frac{\mathrm{h}}{\mathrm{a}}$, where $\mathrm{t}_{1} \& \mathrm{t}_{2}$ are parameters of those points where this line meets the
parabola. Also $\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}=\frac{4}{\mathrm{~m}^{2}}+\frac{2 \mathrm{~h}}{\mathrm{a}}$.
Now circle having this chord as diameter will be
$x^{2}+y^{2} \quad a\left(t_{1}{ }^{2}+t_{2}{ }^{2}\right) x \quad 2 a\left(t_{1}+t_{2}\right) y+a^{2} t_{1}{ }^{2} t_{2}{ }^{2}+4 a^{2} t_{1} t_{2}=0$.
Or $x^{2}+y^{2} \quad a\left(\frac{4}{m^{2}}+\frac{2 h}{a}\right) x \quad \frac{4 a}{m} y+h^{2} \quad 4 a h=0$.
Now if we consider two such circles with $\mathrm{m}=\mathrm{m}_{1} \& \mathrm{~m}=\mathrm{m}_{2}$, then radical axis of these circles will be
$\left(\frac{1}{m_{1}{ }^{2}} \frac{1}{m_{2}{ }^{2}}\right) x+\left(\frac{1}{m_{1}} \frac{1}{m_{2}}\right) y=0 \quad$ or $\left(m_{1}+m_{2}\right) x+m_{1} m_{2} y=0$.
Clearly it passes through the origin.
Q. 7

Comparing $\mathrm{P}(16,16)$ with $\left(4 \mathrm{t}^{2}, 8 \mathrm{t}\right)$ gives $\mathrm{t}=2$.
Now tangent at P will be $2 \mathrm{y}=\mathrm{x}+16$ \& normal at P will be $2 \mathrm{x}+\mathrm{y}=48$.
Points where these lines meet the x-axis will be $\mathrm{A}(-16,0) \& B(24,0)$.
As angle APB is a right angle hence the circle passing through $\mathrm{P}, \mathrm{A} \& \mathrm{~B}$ will have AB as diameter. Hence $C_{1}:(x+16)\left(\begin{array}{ll}x & 24\end{array}\right)+y^{2}=0$.
Equation of common chord of $C_{1} \& C_{2}$ will be $6 x+y+197=0$.
Q. 8

Let $l=a t^{2} \& m=2 a t$. Now vertices of the triangle are $A(0,2), B\left(0, \frac{1}{2 a t}\right) \& C\left(\frac{1 \quad 4 a t}{a t^{2}}, 2\right)$.
As the triangle is right angled hence by the concept of Euler's line its circum center (x, y) will be $\left(0+0+\frac{14 \mathrm{at}}{\mathrm{at}^{2}}, 2+\frac{1}{2 \mathrm{at}}+2\right)$.

Now $t=\frac{1}{2 a\left(\begin{array}{ll}y & 4\end{array}\right)} \quad x=4 a\left(\begin{array}{ll}y & 6\end{array}\right)\left(\begin{array}{ll}y & 4\end{array}\right)$, which is equation of a parabola.
Q. 9

Any tangent to $y^{2}=4 a x$ will be $y=m x+\frac{a}{m}$ and any normal to $x^{2}=4$ by will be $y=m x+2 b+\frac{b}{m^{2}}$
Comparing the two equations gives $\frac{a}{m}=2 b+\frac{b}{m^{2}}$ or $2 \mathrm{bm}^{2} \quad \mathrm{am}+\mathrm{b}=0$.
For this equation to have real $\&$ distinct roots $a^{2}>8 b^{2}$.
Q. 10

Let $B \& C$ be $\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right) \&\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right)$ such that A is $\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$. Also let another tangent be drawn at $\mathrm{D}\left(\mathrm{at}_{3}{ }^{2}, 2 \mathrm{at}_{3}\right)$ such that $\mathrm{P} \& \mathrm{Q}$ are $\left(\mathrm{at}_{1} \mathrm{t}_{3}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{3}\right)\right) \&\left(\mathrm{at}_{2} \mathrm{t}_{3}, \mathrm{a}\left(\mathrm{t}_{2}+\mathrm{t}_{3}\right)\right)$.
Now $A P=a\left|t_{2} \quad t_{3}\right| \sqrt{t_{1}{ }^{2}+1}, A Q=a\left|t_{3} \quad t_{1}\right| \sqrt{t_{2}{ }^{2}+1}$.
Also $\mathrm{AB}=\mathrm{a}\left|\mathrm{t}_{2} \quad \mathrm{t}_{1}\right| \sqrt{\mathrm{t}_{1}^{2}+1} \& \mathrm{AC}=\mathrm{a}\left|\mathrm{t}_{2} \quad \mathrm{t}_{1}\right| \sqrt{\mathrm{t}_{2}^{2}+1}$.

$$
\frac{\mathrm{AP}}{\mathrm{AB}}+\frac{\mathrm{AQ}}{\mathrm{AC}}=\frac{\left|\mathrm{t}_{2} \quad \mathrm{t}_{3}\right|+\mid \mathrm{t}_{3}}{} \mathrm{t}_{1}| |
$$

Now considering $t_{1}, t_{3} \& t_{2}$ in cyclic order we get $\frac{A P}{A B}+\frac{A Q}{A C}=1$.
Q. 11

Let the point K be $(h, 0)$ and slope of chord through K be $\tan \theta$, then any point on this line at a distance r from K will be $(h+r \cos \theta, r \sin \theta)$.
For $r=P K \& r=Q K$, this point will satisfy the equation of parabola, hence by substituting these coordinates in the equation of the parabola we get $\left(\sin ^{2}\right) r^{2} \quad(4 a \cos) r \quad 4 a h=0$.

Roots of this equation are $\mathrm{PK} \&-\mathrm{QK}$, hence $\mathrm{PK}-\mathrm{QK}=\frac{4 \mathrm{a} \cos }{\sin ^{2}}, \& \mathrm{PK} \cdot \mathrm{QK}=\frac{4 \mathrm{ah}}{\sin ^{2}}$.

Now $\frac{1}{\mathrm{PK}^{2}}+\frac{1}{\mathrm{QK}^{2}}=\frac{(\mathrm{PK} \mathrm{QK})^{2}+2 \mathrm{PK} \cdot \mathrm{QK}}{(\mathrm{PK} \cdot \mathrm{QK})^{2}} \quad \frac{1}{\mathrm{PK}^{2}}+\frac{1}{\mathrm{QK}^{2}}=\frac{16 \mathrm{a}^{2} \cos ^{2}+8 \mathrm{ah} \sin ^{2}}{64 \mathrm{a}^{2} \mathrm{~h}^{2}}$
Clearly if $\mathrm{h}=2 \mathrm{a}$, then $\frac{1}{\mathrm{PK}^{2}}+\frac{1}{\mathrm{QK}^{2}}=\frac{1}{4 \mathrm{~h}^{2}}$.
Q. 12

Any tangent to $y^{2}=4 a(x+a): y=m x+a m+\frac{a}{m}$
\& an orthogonal tangent to $y^{2}=4 b(x+b): y=\frac{1}{m} x \quad \frac{b}{m} \quad b m$.
Arranging both the equations as quadratic equations in m gives
$b m^{2}+m y+x+b=0 \&(x+a) m^{2} \quad y m+a=0$.
Comparing the two equations gives $\frac{b}{x+a}=\frac{y}{y}=\frac{x+b}{a} \quad x+a+b=0$.
Now combining $y^{2}=4 a(x+a) \& y^{2}=4 b(x+b)$ in order get a linear equation we get common chord as $\mathrm{x}+\mathrm{a}+\mathrm{b}=0$.
Q. 13

Let the fixed parabola be $y^{2}=4 a x \&$ the variable parabola be $\left(\begin{array}{lll}y & k\end{array}\right)^{2}=4 a\left(\begin{array}{ll}x & h\end{array}\right)$ having vertex at $\mathrm{P}(\mathrm{h}, \mathrm{k})$.
Now as the two parabolas touch hence tangent to the two parabolas at $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ must be the same.
Tangent to $y^{2}=4 a x$ will be $y=m x+\frac{a}{m}$ touching it at $T\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right) \&$
that to $\left(\begin{array}{ll}\mathrm{y} & \mathrm{k}\end{array}\right)^{2}=4 \mathrm{a}\left(\begin{array}{ll}\mathrm{x} & \mathrm{h}\end{array}\right)$ will be $\mathrm{y} \quad \mathrm{k}=\mathrm{m}\left(\begin{array}{ll}\mathrm{x} & \mathrm{h}\end{array}\right) \frac{\mathrm{a}}{\mathrm{m}}$ or $\mathrm{y}=\mathrm{mx}+\mathrm{k} \quad \mathrm{mh} \frac{\mathrm{a}}{\mathrm{m}}$.
Comparing the two equations gives $\mathrm{k} \quad \mathrm{mh}=\frac{2 \mathrm{a}}{\mathrm{m}} \&$ substituting coordinates of T in equation of variable parabola gives $\left(\frac{2 \mathrm{a}}{\mathrm{m}} \mathrm{k}\right)^{2}=4 \mathrm{a}\left(\frac{\mathrm{a}}{\mathrm{m}^{2}} \mathrm{~h}\right)$.
Or $\mathrm{hm}^{2} \quad \mathrm{~km}+2 \mathrm{a}=0 \&\left(\mathrm{k}^{2} \quad 4 \mathrm{ah}\right) \mathrm{m}^{2} \quad 4 \mathrm{akm}+8 \mathrm{a}^{2}=0$.
Comparing the two equations in order to eliminate m gives
$\frac{k^{2} 4 a h}{h}=4 a$ or $k^{2}=8 a h$, hence required locus is $y^{2}=8 a x$.
Q. 14

Adding the two equations gives $x^{2}+6 x \quad 4 y+13=0$ or $(x+3)^{2}=4\left(\begin{array}{ll}y & 1\end{array}\right)$, which means each of the points A, B, C \& D lie on a parabola with vertex at $(-3,1)$ and focus at $\mathrm{P}(-3,2)$.
Hence PA, PB, PC, PD will be focal distances of these points.
Now let any point on this parabola be $\left(2 t \quad 3, t^{2}+1\right)$. Substitute these coordinates in the equation $x^{2} \quad y^{2}+6 x+16 y \quad 46=0$ to get $t^{4} \quad 18 t^{2}+24 t+40=0$.
Now let the roots of this be $t_{1}, t_{2}, t_{3}, t_{4}$, then
$\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}=0, \mathrm{t}_{1} \mathrm{t}_{2}+\mathrm{t}_{1} \mathrm{t}_{3}+\mathrm{t}_{1} \mathrm{t}_{4}+\mathrm{t}_{2} \mathrm{t}_{3}+\mathrm{t}_{2} \mathrm{t}_{4}+\mathrm{t}_{3} \mathrm{t}_{4}=18$
Also Focal distance of a point with parameter t will be $1+t^{2}$, hence
$\mathrm{PA}+\mathrm{PB}+\mathrm{PC}+\mathrm{PD}=4+\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+\mathrm{t}_{3}{ }^{2}+\mathrm{t}_{4}{ }^{2}$.
Now from above relations
$\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+\mathrm{t}_{3}{ }^{2}+\mathrm{t}_{4}{ }^{2}=\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}\right)^{2} \quad 2\left(\mathrm{t}_{1} \mathrm{t}_{2}+\mathrm{t}_{1} \mathrm{t}_{3}+\mathrm{t}_{1} \mathrm{t}_{4}+\mathrm{t}_{2} \mathrm{t}_{3}+\mathrm{t}_{2} \mathrm{t}_{4}+\mathrm{t}_{3} \mathrm{t}_{4}\right)$
Therefor $\mathrm{PA}+\mathrm{PB}+\mathrm{PC}+\mathrm{PD}=40$.
Q. 15

Normal to $y^{2}=4 a x$ at any point $P(t)$ will be $t x+y=2 a t+a t^{3}$.
This will meet the x -axis at $\mathrm{Q}\left(2 \mathrm{a}+\mathrm{at}^{2}, 0\right)$.
The line perpendicular to normal and passing through Q will be $x \quad t y=2 a+a t^{2}$.
Now this equation may be rearranged as $y=m\left(\begin{array}{ll}x & 2 a\end{array}\right) \frac{\mathrm{a}}{\mathrm{m}}$, where $\mathrm{m}=\frac{1}{\mathrm{t}}$.
Clearly its in form of tangent line of slope m to the parabola $y^{2}=4 a\left(\begin{array}{ll}x & 2 a\end{array}\right)$.
Q. 16

Let mid point of any such chord be $\mathrm{M}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$.
Now using $T=S_{1}$, equation of chord of $x^{2}+y^{2}=16 a^{2}$ having mid point at M may be represented as $a t^{2} x+2 a t y=a^{2} t^{4}+4 a^{2} t^{2}$.
As this chord is drawn through $(h, 0)$ hence substituting these coordinates in equation of chord we get $a t^{2} x+2 a t y=a^{2} t^{4}+4 a^{2} t^{2}$.
Now the above equation gives three values of t, namely $0 \& \pm \sqrt{\frac{h \quad 4 a}{a^{2}}}$ out of which the later two values will be real $\&$ other than 0 only if $h>4 a$.
Also for M to be mid point of chord it must lie inside the circle hence
$a^{2} t^{4}+4 a^{2} t^{2} \quad 16 a^{2}<0$ or $\left(\frac{4 a \mathrm{~h}}{\mathrm{a}^{2}}\right)^{2}+4\left(\frac{4 a \mathrm{~h}}{\mathrm{a}^{2}}\right) \quad 16<0$, hence $\mathrm{h}<(\sqrt{5}+1) 2 \mathrm{a}$.
Q. 17

Let A, B \& P be $\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{2}\right),\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right) \&\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right)$ on $\mathrm{y}^{2}=4 \mathrm{ax}$.
Tangent PB will be $x \quad t_{2} y+a t_{2}^{2}=0$.
Now any circle touching PB at P may be represented as family of point circle having center at P and the line PB i.e. $\left.\left(\begin{array}{ll}x & a t_{1} t_{2}\end{array}\right)^{2}+\left(\begin{array}{ll}y & a\left(t_{1}+t_{2}\right.\end{array}\right)\right)^{2}+\left(\begin{array}{ll}x & t_{2} y+a t_{2}{ }^{2}\end{array}\right)=0$.
As this circle passes through $\mathrm{F}(\mathrm{a}, 0)$, hence $=\mathrm{a}\left(1+\mathrm{t}_{1}{ }^{2}\right)$.
Now the circle touching PB at $\mathrm{P} \&$ passing through F is
$\left.\left(\begin{array}{ll}x & a t_{1} t_{2}\end{array}\right)^{2}+\left(\begin{array}{ll}y & a\left(t_{1}+t_{2}\right.\end{array}\right)\right)^{2} \quad a\left(1+t_{1}{ }^{2}\right)\left(\begin{array}{ll}x & t_{2} y+a t_{2}^{2}\end{array}\right)=0$
Substituting coordinates of A in L.H.S. of equation of circle gives
 is zero, hence this circle passes through A .
Q. 18
(i) Let $\mathrm{P}, \mathrm{Q} \& \mathrm{R}$ be the vertices of a triangle formed by three tangents of $\mathrm{y}^{2}=4 a \mathrm{ax}$, then the coordinates of these points can be taken as $\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right),\left(\mathrm{at}_{2} \mathrm{t}_{3}, \mathrm{a}\left(\mathrm{t}_{2}+\mathrm{t}_{3}\right)\right) \&\left(\mathrm{at}_{3} \mathrm{t}_{1}, \mathrm{a}\left(\mathrm{t}_{3}+\mathrm{t}_{1}\right)\right)$. Also the focus is $S(a, 0)$.
Now $m_{P Q}=\frac{1}{t_{2}}, m_{P R}=\frac{1}{t_{1}}, m_{F Q}=\frac{t_{2}+t_{3}}{t_{2} t_{3}} \& m_{F R}=\frac{t_{3}+t_{1}}{\mathrm{t}_{3} \mathrm{t}_{1}} 1$.
Let angle between PQ \& PR be , then $\tan =\frac{\frac{1}{t_{2}} \frac{1}{t_{1}}}{1+\frac{1}{t_{2}} \frac{1}{t_{1}}}$ i.e. $\frac{t_{1} t_{2}}{t_{1} t_{2}+1}$.
Similarly let angle between FQ \& FR be , then tan $=\frac{\frac{t_{3}+t_{1}}{t_{3} t_{1}} 1 \frac{t_{2}+t_{3}}{t_{2} t_{3} 1}}{1+\frac{t_{3}+t_{1}}{t_{3} t_{1}} \frac{t_{2}+t_{3}}{t_{2} t_{3}} 1}$ i.e. $\frac{t_{2} t_{1}}{t_{1} t_{2}+1}$.
(Here take care to put slopes in same cyclic order to get correct angles)
Clearly \& are supplementary angles, hence PQFR is a cyclic quadrilateral.
(ii) Altitude through P must be perpendicular to tangent $Q R$, hence its slope will be t_{3}.

Equation of this altitude will be y $a\left(t_{1}+t_{2}\right)=t_{3}\left(\begin{array}{ll}x & a t_{1} t_{2}\end{array}\right)$.
Similarly altitude through Q will be y $a\left(t_{2}+t_{3}\right)=t_{1}\left(\begin{array}{ll}x & a t_{2} t_{3}\end{array}\right)$.
Eliminating y between these two equations gives $x=a$, hence orthocenter lies on directrics.
Q. 19

Any circle touching the parabola at $\mathrm{P}(\mathrm{t})$ will also touch the tangent to parabola at P .
Now any circle touching the line $y=t x+a t^{2}$ at P may be represented as family of point circle having center at P and the line PB i.e. $\left(\begin{array}{ll}\mathrm{x} & \mathrm{at}{ }^{2}\end{array}\right)^{2}+\left(\begin{array}{ll}\mathrm{y} & 2 \mathrm{at}\end{array}\right)^{2}+\left(\begin{array}{ll}\mathrm{x} & \mathrm{ty}+\mathrm{at}^{2}\end{array}\right)=0$.
As this circle passes through $F(a, 0)$, hence $=a\left(1+t^{2}\right)$.
Hence the circle touching the parabola at P \& passing through F is
$\left(\begin{array}{ll}\mathrm{x} & \mathrm{at}\end{array}\right)^{2}+\left(\begin{array}{ll}\mathrm{y} & 2 \mathrm{at}\end{array}\right)^{2} \quad \mathrm{a}\left(1+\mathrm{t}^{2}\right)\left(\begin{array}{ll}\mathrm{x} & \mathrm{ty}+\mathrm{at} \mathrm{t}^{2}\end{array}\right)=0$
Similarly the circle touching the parabola at Q \& passing through F is
$\left(\mathrm{x} \frac{\mathrm{a}}{\mathrm{t}^{2}}\right)^{2}+\left(\mathrm{y}+\frac{2 \mathrm{a}}{\mathrm{t}}\right)^{2} \mathrm{a}\left(1+\frac{1}{\mathrm{t}^{2}}\right)\left(\mathrm{x}+\frac{1}{\mathrm{t}} \mathrm{y}+\frac{\mathrm{a}}{\mathrm{t}^{2}}\right)=0$, note that $\mathrm{P} \& \mathrm{Q}$ are end points of a focal chord.
The two equation of circles simplify to

$$
\begin{aligned}
& x^{2}+y^{2} a\left(3 t^{2}+1\right) x+a t\left(t^{2} \quad 3\right) y+3 a^{2} t^{2}=0 \& x^{2}+y^{2} \quad a\left(\frac{3}{t^{2}}+1\right) x+\frac{a}{t}\left(3 \frac{1}{t^{2}}\right) y+\frac{3 a^{2}}{t^{2}}=0 . \\
& \text { Now } g_{1}=\frac{a\left(3 t^{2}+1\right)}{2}, f_{1}=\frac{a t\left(t^{2} \quad 3\right)}{2}, c_{1}=3 a^{2} t^{2} \& g_{2}=\frac{a\left(3+t^{2}\right)}{2 t^{2}}, f_{2}=\frac{a\left(3 t^{2} \quad 1\right)}{2 t^{3}}, c_{2}=\frac{3 a^{2}}{t^{2}} \text { gives } \\
& \left.\left.2 g_{1} g_{2}+2 f_{1} f_{2}=2 \frac{a\left(3 t^{2}+1\right)}{2} \frac{a\left(3+t^{2}\right)}{2 t^{2}}+2 \frac{a t\left(t^{2}\right.}{2} 3\right) \frac{a\left(3 t^{2}\right.}{2 t^{3}} 1\right) \\
& \text { or } 2 g_{1} g_{2}+2 f_{1} f_{2}=a^{2}\left[\frac{3 t^{4}+3}{t^{2}}\right]=c_{1}+c_{2} .
\end{aligned}
$$

Hence the circles are orthogonal.

Q. 20

Equation of line joining $(1,0) \&(0,2)$ is $2 \mathrm{x}+\mathrm{y}=2$.
Now any curve having $x y=0$ as pair of tangents and $2 x+y-2=0$ as chord of contact may be represented as $(2 x+y \quad 2)^{2}+x y=0$ or $4 x^{2}+(+4) x y+y^{2} \quad 8 x \quad 4 y+4=0$.
For this equation to represent a parabola $h^{2}=\mathrm{ab} \Rightarrow\left(\frac{+4}{2}\right)^{2}=4 \Rightarrow=8$ or 0 .
But for $=0$ the equation becomes $\left(\begin{array}{ll}2 x+y & 2\end{array}\right)^{2}=0$.
Hence required parabola is $4 x^{2} \quad 4 x y+y^{2} \quad 8 x \quad 4 y+4=0$.
Q. 21

Consider the parabola $y^{2}=4 \mathrm{ax}$.
Let P be $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right) \& \mathrm{Q}$ be (h, k). Also equation of PQ will be

$$
\mathrm{ty}=\mathrm{x}+\mathrm{at}^{2}, \text { hence } \mathrm{k}=\frac{\mathrm{h}+\mathrm{at}^{2}}{\mathrm{t}}
$$

Now slope of FP is $\frac{2 \mathrm{t}}{\mathrm{t}^{2} \quad 1}$, hence equation of QM will be

$$
\left(\begin{array}{ll}
\mathrm{y} & \mathrm{k}
\end{array}\right)=\frac{1 \mathrm{t}^{2}}{2 \mathrm{t}}\left(\begin{array}{ll}
\mathrm{x} & \mathrm{~h}
\end{array}\right) .
$$

Also QN will be parallel to x -axis thus its equation will be $\mathrm{y}=\mathrm{k}$.
Hence $\mathrm{QN}=\mathrm{a}+\mathrm{h}$.
Now perpendicular distance of QM from F i.e. $F M=\left|\frac{k+\frac{1 \mathrm{t}^{2}}{2 \mathrm{t}}\left(\begin{array}{ll}\mathrm{a} & \mathrm{h}\end{array}\right)}{\sqrt{\left(\frac{1 \mathrm{t}^{2}}{2 \mathrm{t}}\right)^{2}+1}}\right|$.
Therefor $F M=\left|\frac{\left.\frac{h+\mathrm{at}^{2}+\frac{1 \mathrm{t}^{2}}{2 \mathrm{t}}(\mathrm{a}}{\mathrm{t}} \mathrm{h}\right)}{\sqrt{\left(\frac{\left.1 \mathrm{t}^{2}\right)^{2}}{2 \mathrm{t}}\right)^{2}+1}}\right| \quad \mathrm{FM}=\left|\frac{(\mathrm{h}+\mathrm{a})\left(1+\mathrm{t}^{2}\right)}{\sqrt{\left(1 \mathrm{t}^{2}\right)^{2}+4 \mathrm{t}^{2}}}\right|$
Or $\mathrm{FM}=\mathrm{h}+\mathrm{a}=\mathrm{QN}$.
Q. 22

We can get the solution by first consider a fixed parabola touching the coordinate axes and then rotating it by an angle .
One such parabola is $x^{2} 2 x y+y^{2} \quad 2 a x \quad 2 a y+a^{2}=0$ which touches the coordinate axes at (the end points of latus rectum i.e. $(a, 0) \&(0, a)$. Equation of its latus rectum is $x+y=a$.
Rotating the parabola by an angle transforms the equation of latus rectum into $\mathrm{x}(\cos +\sin)+\mathrm{y}(\cos \quad \sin)=\mathrm{a}$, which may be rearranged as
$y=\frac{\cos +\sin }{\cos \sin } x+\frac{a}{\cos \sin }$. Now let $\frac{\cos +\sin }{\cos \sin }=m$, then the equation reduces to $y=m x \quad \frac{a}{\sqrt{2}} \sqrt{1+m^{2}}$, which is equation of tangent to the circle $x^{2}+y^{2}=\frac{a^{2}}{2}$.
Q. 23

Let vertices of the triangle be $\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{1}\right),\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right),\left(\mathrm{at}_{3}^{2}, 2 \mathrm{at}_{3}\right)$.
Now sides joining these will be
$y=\frac{2}{t_{1}+t_{2}} x+\frac{2 \mathrm{at}_{1} \mathrm{t}_{2}}{\mathrm{t}_{1}+\mathrm{t}_{2}}, \mathrm{y}=\frac{2}{\mathrm{t}_{2}+\mathrm{t}_{3}} \mathrm{x}+\frac{2 \mathrm{at}_{2} \mathrm{t}_{3}}{\mathrm{t}_{2}+\mathrm{t}_{3}}, \mathrm{y}=\frac{2}{\mathrm{t}_{3}+\mathrm{t}_{1}} \mathrm{x}+\frac{2 \mathrm{at}_{2} \mathrm{t}_{3}}{\mathrm{t}_{3}+\mathrm{t}_{1}}$.
Let the first line touch $x^{2}=4 b y$, then $\frac{2 a t_{1} t_{2}}{t_{1}+t_{2}}=b\left(\frac{2}{t_{1}+t_{2}}\right)^{2}$ or $a t_{1} t_{2}\left(t_{1}+t_{2}\right)=2 b$.
Similarly if the second line is a tangent then $a_{2} t_{3}\left(t_{2}+t_{3}\right)=2 b$.
Now from these two conditions we get $t_{1}+t_{2}+t_{3}=0 \& t_{2} t_{3} t_{1}=\frac{2 b}{a}$.
Further $a t_{3} t_{1}\left(t_{3}+t_{1}\right)=a \quad \frac{2 b}{a t_{2}}\left(t_{2}\right)=2 b$, hence the third line also touch $x^{2}=4 b y$.
Q. 24

If the triangle is equilateral, then its centroid will be same as circum center.
Let the vertices be $\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{1}\right),\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right),\left(\mathrm{at}_{3}^{2}, 2 \mathrm{at}_{3}\right)$.
Centroid will be $\mathrm{h}=\frac{\mathrm{a}\left(\mathrm{t}_{1}^{2}+\mathrm{t}_{2}^{2}+\mathrm{t}_{3}^{2}\right)}{3} \& \mathrm{k}=\frac{2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right)}{3}$.
Now consider the circle $x^{2}+y^{2} \quad 2 h x \quad 2 k y+c=0$ and put $\left(a t^{2}, 2 a t\right)$ in this equation to get $\mathrm{a}^{2} \mathrm{t}^{4}+2 \mathrm{a}(2 \mathrm{a} \quad \mathrm{h}) \mathrm{t}^{2} \quad 4 \mathrm{akt}+\mathrm{c}=0$.
Now if this is the circum circle of triangle $P Q R$, then t_{1}, t_{2}, t_{3} will be three of its roots.
Using relations in roots and coefficients we get
$\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}=0, \mathrm{t}_{1} \mathrm{t}_{2}+\mathrm{t}_{1} \mathrm{t}_{3}+\mathrm{t}_{1} \mathrm{t}_{4}+\mathrm{t}_{2} \mathrm{t}_{3}+\mathrm{t}_{2} \mathrm{t}_{4}+\mathrm{t}_{3} \mathrm{t}_{4}=\frac{2(2 \mathrm{a} \mathrm{h})}{\mathrm{a}} \&$
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}+\mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4}+\mathrm{t}_{3} \mathrm{t}_{4} \mathrm{t}_{1}+\mathrm{t}_{4} \mathrm{t}_{1} \mathrm{t}_{2}=\frac{4 \mathrm{k}}{\mathrm{a}}$.
Also $\mathrm{h}=\frac{\mathrm{a}\left(\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+\mathrm{t}_{3}{ }^{2}\right)}{3} \& \mathrm{k}=\frac{2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right)}{3}$ gives $\mathrm{t}_{4}=\frac{3 \mathrm{k}}{2 \mathrm{a}} \& \mathrm{t}_{1} \mathrm{t}_{2}+\mathrm{t}_{1} \mathrm{t}_{3}+\mathrm{t}_{1} \mathrm{t}_{4}=\frac{12 \mathrm{ah} 9 \mathrm{k}^{2}}{8 \mathrm{a}^{2}}$
Now from $t_{1} t_{2}+t_{1} t_{3}+t_{1} t_{4}+t_{2} t_{3}+t_{2} t_{4}+t_{3} t_{4}=\frac{2(2 a \mathrm{~h})}{a}$ we get
$\mathrm{t}_{1} \mathrm{t}_{2}+\mathrm{t}_{2} \mathrm{t}_{3}+\mathrm{t}_{3} \mathrm{t}_{1}+\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right) \mathrm{t}_{4}=\frac{2(2 \mathrm{a} \mathrm{h})}{\mathrm{a}}$.
Substituting the values gives $4 \mathrm{ah} \quad 9 \mathrm{k}^{2} \quad 32 \mathrm{a}^{2}=0$.
Hence locus of centroid of triangle $P Q R$ is $9 y^{2} \quad 4 a x+32 a^{2}=0$.
Q. 25

Let extremities of the focal chord be $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right), \mathrm{Q}\left(\frac{\mathrm{a}}{\mathrm{t}^{2}}, \frac{2 \mathrm{a}}{\mathrm{t}}\right)$.
Point of intersection of tangents at $P \& Q$ will be $R\left(a, 2 a\left(t \frac{1}{t}\right)\right)$.
Now area of triangle $P Q R$ will be
$\left.\frac{1}{2} \| \begin{array}{ccc}1 & a t^{2} & 2 a t \\ 1 & \frac{a}{t^{2}} & \frac{2 a}{t} \\ 1 & a & a(t \\ t & \frac{1}{t}\end{array}\right) \|$ i.e. $\frac{a^{2}}{2}\left(t^{2}+\frac{1}{t^{2}}+2\right)\left|t+\frac{1}{t}\right|$.
Similarly area of triangle OPQ will be
$\frac{1}{2}\left\|\begin{array}{ccc}1 & \mathrm{at}^{2} & 2 \mathrm{at} \\ 1 & \frac{\mathrm{a}}{\mathrm{t}^{2}} & \frac{2 \mathrm{a}}{\mathrm{t}} \\ 1 & 0 & 0\end{array}\right\|$ i.e. $\mathrm{a}^{2}\left|\mathrm{t}+\frac{1}{\mathrm{t}}\right|$.
Now ratio of these two area will be $\frac{1}{2}\left(\mathrm{t}^{2}+\frac{1}{\mathrm{t}^{2}}\right)+1$.
Q. 26

Let slope of the variable line be tan .
Now any point on this line at a distance r from $P(a, b)$ will be $(a+r \cos , b+r \sin)$.
These coordinates will satisfy $y^{2}=4 c x$ for $r=P A \& r=P B$.
Hence $(b+r \sin)^{2}=4 c(a+r \cos)$ i.e. $\left(\sin ^{2}\right) r^{2}+(2 b \sin \quad 4 c \cos) r+b^{2} \quad 4 a c=0$ will have PA \& PB as roots. Now
$\mathrm{PA}+\mathrm{PB}=\frac{4 \mathrm{cos} 2 \mathrm{~b} \sin }{\sin ^{2}} \& \mathrm{PA} \quad \mathrm{PB}=\frac{4 \mathrm{ac} \mathrm{b}^{2}}{\sin ^{2}}$.
As given $\mathrm{PA}, \mathrm{PQ}, \mathrm{PB}$ are in H.P., hence $\mathrm{PQ}=\frac{2 \mathrm{PA} \quad \mathrm{PB}}{\mathrm{PA}+\mathrm{PB}} \quad \mathrm{PQ}=\frac{2\left(\begin{array}{ll}4 \mathrm{ac} & \mathrm{b}^{2}\end{array}\right)}{4 \mathrm{c} \cos 2 \mathrm{bsin}}$.
Now let coordinate of Q be (x, y), then
$x=a+P Q \cos \& y=b+P Q \sin \quad \cos =\frac{x \quad a}{P Q} \& \sin =\frac{y \quad b}{P Q}$.
Substituting these in the expression of $P Q$ we get $P Q=\frac{2\left(\begin{array}{ll}4 a c & b^{2}\end{array}\right)}{4 c\left(\begin{array}{lll}x & a\end{array}\right) 2 b\left(\begin{array}{ll}y & b\end{array}\right)} P Q$
or $2 \mathrm{cx} \quad$ by $=6 \mathrm{ac} \quad 2 \mathrm{~b}^{2}$.
Hence locus of Q is a fixed straight line.
Q. 27

Foot of perpendicular from the focus F on tangent at P will lie on y -axis, hence let $\mathrm{P}, \mathrm{F} \& \mathrm{M}$ be $\left(a t^{2}, 2 a t\right),(a, 0) \&(0, a t)$.
Now area of triangle PFM will be
$\frac{1}{2}\left\|\begin{array}{ccc}1 & \mathrm{at}^{2} & 2 \mathrm{at} \\ 1 & \mathrm{a} & 0 \\ 1 & 0 & \text { at }\end{array}\right\|=\frac{\mathrm{a}^{2}}{2}\left(\mathrm{t}^{3}+\mathrm{t}\right)$.
Now range of t is 0 to 1 .
Maximum area will be for $t=1$ i.e. maximum area $=a^{2}$.

Q. 28

Let mid point of any such chord be $\mathrm{M}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$.
Now using $T=S_{1}$, equation of chord of $x^{2}+y^{2}=16 a^{2}$ having mid point at M may be represented as $a t^{2} x+2 a t y=a^{2} t^{4}+4 a^{2} t^{2}$.
As this chord is drawn through $(h, 0)$ hence substituting these coordinates in equation of chord we get $\mathrm{at}^{2} \mathrm{x}+2 \mathrm{aty}=\mathrm{a}^{2} \mathrm{t}^{4}+4 \mathrm{a}^{2} \mathrm{t}^{2}$.
Now the above equation gives three values of t, namely $0 \& \pm \sqrt{\frac{h a}{a^{2}}}$ out of which the later two values will be real \& other than 0 only if $h>4 a$.
Also for M to be mid point of chord it must lie inside the circle hence
$\mathrm{a}^{2} \mathrm{t}^{4}+4 \mathrm{a}^{2} \mathrm{t}^{2} \quad 16 \mathrm{a}^{2}<0$ or $\left(\frac{4 \mathrm{a}-\mathrm{h}}{\mathrm{a}^{2}}\right)^{2}+4\left(\frac{4 \mathrm{a} \mathrm{h}}{\mathrm{a}^{2}}\right) \quad 16<0$, hence $\mathrm{h}<(\sqrt{5}+1) 2 \mathrm{a}$.
Q. 29

Reflection at a point P on any curved surface take place such that incident ray and reflected are reflections of each other in the normal to the curve at P.
Now $y=b$ meets $y^{2}=4 a x$ at point $P\left(\frac{b^{2}}{4 a}, b\right)$. Comparing this with $\left(a t^{2}, 2 a t\right)$ gives $t=\frac{b}{2 a}$.
Normal to the parabola at this point will be

$$
\frac{\mathrm{b}}{2 \mathrm{a}} \mathrm{x}+\mathrm{y}=2 \mathrm{a} \frac{\mathrm{~b}}{2 \mathrm{a}}+\mathrm{a}\left(\frac{\mathrm{~b}}{2 \mathrm{a}}\right)^{3} \text { or } 4 \mathrm{abx}+8 \mathrm{a}^{2} \mathrm{y}=8 \mathrm{a}^{2} \mathrm{~b}+\mathrm{b}^{3}
$$

Now slope of normal is $\frac{b}{2 a}$ and $y=b$ is parallel to x-axis so if \quad is the angle between the incident ray and normal, then $\tan =\frac{\mathrm{b}}{2 \mathrm{a}}$.
Reflected ray will make an angle 2 with $\mathrm{y}=\mathrm{b}$, hence slope of reflected ray will be
$\tan 2=\frac{2 \tan }{1 \tan ^{2}}=\frac{4 \mathrm{ab}}{4 \mathrm{a}^{2} \mathrm{~b}^{2}}$.
Equation of the reflected ray: y $b=\frac{4 a b}{4 a^{2} \quad b^{2}}\left(x \frac{b^{2}}{4 a}\right)$ or $4 a b x+\left(\begin{array}{ll}4 a^{2} & b^{2}\end{array}\right) y=4 a^{2} b$.
Clearly ($\mathrm{a}, 0$) satisfies this equation.
Q. 30

If the triangle is equilateral, then its centroid will be same as circum center.
Let the vertices be $\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right),\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right),\left(\mathrm{at}_{3}{ }^{2}, 2 \mathrm{at}_{3}\right)$.
Centroid will be $\mathrm{h}=\frac{\mathrm{a}\left(\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+\mathrm{t}_{3}{ }^{2}\right)}{3} \& \mathrm{k}=\frac{2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right)}{3}$.

Now consider the circle $x^{2}+y^{2} \quad 2 \mathrm{hx} \quad 2 \mathrm{ky}+\mathrm{c}=0$ and put $\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ in this equation to get $a^{2} t^{4}+2 a(2 a r) t^{2} \quad 4 a k t+c=0$.
Now if this is the circum circle of triangle $P Q R$, then t_{1}, t_{2}, t_{3} will be three of its roots.
Using relations in roots and coefficients we get
$\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}=0, \mathrm{t}_{1} \mathrm{t}_{2}+\mathrm{t}_{1} \mathrm{t}_{3}+\mathrm{t}_{1} \mathrm{t}_{4}+\mathrm{t}_{2} \mathrm{t}_{3}+\mathrm{t}_{2} \mathrm{t}_{4}+\mathrm{t}_{3} \mathrm{t}_{4}=\frac{2(2 \mathrm{a} \mathrm{h})}{\mathrm{a}} \&$
$\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}+\mathrm{t}_{2} \mathrm{t}_{3} \mathrm{t}_{4}+\mathrm{t}_{3} \mathrm{t}_{4} \mathrm{t}_{1}+\mathrm{t}_{4} \mathrm{t}_{1} \mathrm{t}_{2}=\frac{4 \mathrm{k}}{\mathrm{a}}$.
Also $\mathrm{h}=\frac{\mathrm{a}\left(\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+\mathrm{t}_{3}{ }^{2}\right)}{3} \& \mathrm{k}=\frac{2 \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right)}{3}$ gives $\mathrm{t}_{4}=\frac{3 \mathrm{k}}{2 \mathrm{a}} \& \mathrm{t}_{1} \mathrm{t}_{2}+\mathrm{t}_{1} \mathrm{t}_{3}+\mathrm{t}_{1} \mathrm{t}_{4}=\frac{12 \mathrm{ah} 9 \mathrm{k}^{2}}{8 \mathrm{a}^{2}}$
Now from $t_{1} t_{2}+t_{1} t_{3}+t_{1} t_{4}+t_{2} t_{3}+t_{2} t_{4}+t_{3} t_{4}=\frac{2(2 a \mathrm{~h})}{a}$ we get
$\mathrm{t}_{1} \mathrm{t}_{2}+\mathrm{t}_{2} \mathrm{t}_{3}+\mathrm{t}_{3} \mathrm{t}_{1}+\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}\right) \mathrm{t}_{4}=\frac{2(2 \mathrm{a} \mathrm{h})}{\mathrm{a}}$.
Substituting the values gives $4 \mathrm{ah} \quad 9 \mathrm{k}^{2} \quad 32 \mathrm{a}^{2}=0$.
Hence locus of centroid of triangle $P Q R$ is $9 y^{2} \quad 4 a x+32 a^{2}=0$.
Q. 31

Given data implies that point of intersection of two normal lies on the parabola.
Let a normal be drawn at $P(\lambda)$, then its equation will be $x+y=2 a+a^{3}$.
If it passes through $\left(a t^{2}, 2 a t\right)$, then $a t^{2}+2 a t=2 a+a^{3}$.
$\mathrm{a}\left(\begin{array}{ll}\mathrm{t}^{2} & 2\end{array}\right)+2 \mathrm{a}(\mathrm{t} \quad)=0$ or ${ }^{2}+\mathrm{t}+\mathrm{a}=0$.
Q. 32

Let the points on parabola be $\mathrm{A}\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right), \mathrm{B}\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right) \& \mathrm{C}\left(\mathrm{at}_{3}{ }^{2}, 2 \mathrm{at}_{3}\right)$.
Points of intersection of tangents at these points will be
$\mathrm{P}\left(\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right), \mathrm{Q}\left(\mathrm{at}_{2} \mathrm{t}_{3}, \mathrm{a}\left(\mathrm{t}_{2}+\mathrm{t}_{3}\right)\right) \& \mathrm{R}\left(\mathrm{at}_{3} \mathrm{t}_{1}, \mathrm{a}\left(\mathrm{t}_{3}+\mathrm{t}_{1}\right)\right)$.
Now Area of $\quad \mathrm{ABC}=\frac{1}{2}\left\|\begin{array}{lll}1 & a t_{1}{ }^{2} & 2 a t_{1} \\ 1 & \mathrm{at}_{2}{ }^{2} & 2 a t_{2} \\ 1 & a t_{3}{ }^{2} & 2 a t_{3}\end{array}\right\|$ \& Area of $\quad \operatorname{PQR}=\frac{1}{2}\left\|\begin{array}{ccc}1 & a t_{2} t_{3} & a\left(t_{2}+t_{3}\right) \\ 1 & a t_{3} t_{1} & a\left(t_{3}+t_{1}\right) \\ 1 & a t_{1} t_{2} & a\left(t_{1}+t_{2}\right)\end{array}\right\|$.
Now take the second determinant,
(i) Subtract $a\left(t_{1}+t_{2}+t_{3}\right)$ from third column to get

Area of $\quad \mathrm{PQR}=\frac{1}{2}\left\|\begin{array}{lll}1 & \mathrm{at}_{2} \mathrm{t}_{3} & \mathrm{at} t_{1} \\ 1 & \mathrm{at}_{3} \mathrm{t}_{1} & \mathrm{at}_{2} \\ 1 & \mathrm{at}_{1} \mathrm{t}_{2} & \mathrm{at}_{3}\end{array}\right\|$.
(ii) Multiply first row by t_{1}, second by t_{2} \& third by t_{3} and take $t_{1} t_{2} t_{3}$ common from second column. Also take a common from second column and multiply 2 a to first column to get

Area of $\mathrm{PQR}=\frac{1}{4}\left\|\begin{array}{ccc}2 \mathrm{at}_{1} & 1 & \mathrm{at}_{1}{ }^{2} \\ 2 \mathrm{at}_{2} & 1 & \mathrm{at}_{2}{ }^{2} \\ 2 \mathrm{at}_{3} & 1 & \mathrm{at}_{3}{ }^{3}\end{array}\right\|$.
(iii) Now interchange first column with second and then second with third to get

Area of $\mathrm{PQR}=\frac{1}{4}\left\|\begin{array}{lll}1 & \mathrm{at}_{1}{ }^{2} & 2 \mathrm{at}_{1} \\ 1 & \mathrm{at}_{2}{ }^{2} & 2 \mathrm{at}_{2} \\ 1 & \mathrm{at}_{3}{ }^{3} & 2 \mathrm{at}_{3}\end{array}\right\|=\frac{1}{2}$ Area of ABC.
Q. 33

Let the points be $\mathrm{P}\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right) \& \mathrm{Q}\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right)$, where as given $\mathrm{t}_{2}=2 \mathrm{t}_{1}$.
Now point of intersection of normal at $\mathrm{P} \& \mathrm{Q}$ will be
$\mathrm{x}=\mathrm{a}\left(\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+\mathrm{t}_{1} \mathrm{t}_{2}+2\right) \& \mathrm{y}=\mathrm{at}_{1} \mathrm{t}_{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
Now $t_{2}=2 t_{1} \quad x \quad 2 a=7 a t_{1}{ }^{2} \& y=6 a t_{1}{ }^{3}$.
Eliminating t_{1} gives $36\left(\begin{array}{ll}x & 2 a\end{array}\right)^{3}=243 a y^{2}$.
Q. 34

Let the points be $\mathrm{P}\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at} \mathrm{t}_{1}\right) \& \mathrm{Q}\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right)$, where as given $\mathrm{t}_{1} \mathrm{t}_{2}=1$.
Now point of intersection of normal at $\mathrm{P} \& \mathrm{Q}$ will be
$\mathrm{x}=\mathrm{a}\left(\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+\mathrm{t}_{1} \mathrm{t}_{2}+2\right) \& \mathrm{y}=\mathrm{at}_{1} \mathrm{t}_{2}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$.
Now $\mathrm{t}_{1} \mathrm{t}_{2}=1$ gives $\mathrm{x}=\mathrm{a}\left(\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+1\right) \& \mathrm{y}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$.
Eliminating $t_{1} \& t_{2}$ gives $a\left(\begin{array}{ll}x & 3 a\end{array}\right)=y^{2}$.
Q. 35

Let the points be $\mathrm{P}\left(\mathrm{at}_{1}{ }^{2}, 2 \mathrm{at}_{1}\right) \& \mathrm{Q}\left(\mathrm{at}_{2}{ }^{2}, 2 \mathrm{at}_{2}\right)$, where as given $\mathrm{t}_{1} \mathrm{t}_{2}=2$.
Now mid point of $P \& Q$ will be $x=\frac{a\left(t_{1}^{2}+t_{2}^{2}\right)}{2} \& y=a\left(t_{1}+t_{2}\right)$.
Now $\mathrm{t}_{1} \mathrm{t}_{2}=2$ gives $2 \mathrm{x}+4 \mathrm{a}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2} \& \mathrm{y}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$.
Eliminating $t_{1} \& t_{2}$ gives $2 a(x+2 a)=y^{2}$.

