Solutions PARABOLA Ex. 2(C)

Q.1

Comparing (2,4) with $(2t^2, 4t)$ gives t = 1.

Now other end of normal will be given by $t' = -t - \frac{2}{t}$ i.e. t' = -3. Hence other end of normal is (18, -12). Now length of normal = $\sqrt{(2-18)^2 + (4+12)^2} = 16\sqrt{2}$. Thus k = 4.

Q.2

Let mid point of PQ be (h,k), then equation of chord will be $ky - 2ax = k^2 - 2ah \{T = S_1\}$. Also any tangent to $y^2 = -4ax$ will be given by $ty + x = at^2$.

Comparing the two equations gives $\frac{t}{k} = \frac{1}{-2a} = \frac{at^2}{k^2 - 2ah}$ or $t = -\frac{k}{2a}$ & $at^2 = \frac{2ah - k^2}{2a}$. Eliminating t in these two relations gives $3k^2 = 4ah$. Hence required locus is $y^2 = \frac{4ax}{3}$.

Q.3

Shortest distance will be measured along common normal to the two curves.

Now any normal to $y^2 = 4x$ will be $tx + y = 2t + t^3$.

As this line is a normal to the given circle as well hence center C(0,12) must satisfy it. $\therefore t^3 + 2t - 12 = 0$ or $(t-2)(t^2 + 2t + 6) = 0$.

Hence the normal will be drwan at P(t=2) i.e. P(4,4) to parabola.

Now distance of P(4,4) from C(0,12) is $4\sqrt{5}$.

Minimum distance will be (CP - radius) i.e. $4(\sqrt{5} - 1)$. Thus a + c - b = 0.

Q.4

Any tan gent to $y^2 = 4ax$ will be $y = mx + \frac{a}{m}$. If this tan gent is drwan from (h, k), then $hm^2 - km + a = 0$. Let the roots be $m_1 \& m_2$, then $m_1 + m_2 = \frac{k}{h} \& m_1 m_2 = \frac{a}{h}$. Also given $m_1 = \tan \alpha_1 \& m_2 = \tan \alpha_2$, hence $\frac{\cot \alpha_1}{\cot \alpha_2} = 2 \Longrightarrow m_2 = 2m_1$. $\Rightarrow m_2 = \frac{k}{3h} \& m_2^2 = \frac{a}{2h}$. Eliminating m_2 gives $2k^2 = 9ah$, hence required locus is $2y^2 = 9ax$.

Q.5

Any point on $y^2 = 4x$ will be $(t^2, 2t)$. Let the distance of this point from (2,0) be d, then $d^2 = (2-t^2)^2 + 4t^2$ or $d^2 = t^4 + 4$. Hence minimum distance must be d = 2 and it will measured from (0,0). a + b + 2 = 2.

Q.6

Any normal to $y^2 = -8x$ will be $y = tx + 4t + 2t^3$. Comparing this with y = -2x - k gives t = -2 & $k = -4t - 2t^3$ i.e. $\frac{k}{3} = 8$.

Q.7

Any tangent to $y^2 = 16x$ will be $y = mx + \frac{4}{m}$ & that to $x^2 = 2y$ be $y = mx - \frac{m^2}{2}$. Comparing the two tangents for being common gives $\frac{4}{m} = -\frac{m^2}{2}$ or m = -2.

Q.8

Let the feet of normals be $(2t_1^2, 4t_1), (2t_2^2, 4t_2) \& (2t_3^2, 4t_3).$ Now for conormal points $t_1 + t_2 + t_2 = 0$, hence A.M. of ordinates i.e. $\frac{4t_1 + 4t_2 + 4t_2}{3} = 0.$

Q.9

For end points of focal chord $t_1t_2 = -1$. Now for A(4a, 4a), $t_1 = 2$ hence $t_2 = -\frac{1}{2}$. Similarly for other end C(t_3) of normal at B(t_2) we have $t_3 = -t_2 - \frac{2}{t_2}$ or $t_3 = \frac{9}{2}$ Also if four points A(t_1), B(t_2), C(t_3) & D(t_3) of a parabola are concyclic, then $t_1 + t_2 + t_3 + t_4 = 0 \Longrightarrow t_4 = -2 + \frac{1}{2} - \frac{9}{2} = -6$.

So coordinates of D are p = 36a, q = -12a which gives $\frac{p+q}{4a} = 6$.

Q.10

The parabolas intersect at (0,0) & (4,4). Clearly the tangents at (0,0) are the coordinate axes hence the parabola intersect at a right angle.

Now tangent to $y^2 = 4x$ at (4, 4) is 4y = 2(x+4) & that to $x^2 = 4y$ is 4x = 2(y+4). {By T = 0} Slopes of these tangents are $m_1 = \frac{1}{2}$ & $m_2 = 2$.

Now
$$\tan \theta = \frac{2 - \frac{1}{2}}{1 + 2 \times \frac{1}{2}} \Longrightarrow \theta = \tan^{-1}\left(\frac{3}{4}\right)$$
, hence $y - x = 1$.

Q.11

Let mid point of chord be (p,q), then equation of chord will be

$$7qy - 25\frac{x+p}{2} = 7q^2 - 25p \ \{By \ T = S_1\}$$

Slope = $\frac{25}{14q} = 4 \Rightarrow 56q = 25$. Hence required slope is $56y = 25$.

Q.12

Equation of tangent to $y^2 = 8x$ will be $x - ty + 2t^2 = 0$. If it is a tangent to $x^2 + y^2 + 6x = 0$, then distance of this line from center of the circle i.e. (-3, 0) will be equal to radius i.e. 3.

$$\left| \frac{-3 - 0 + 2t^2}{\sqrt{1 + t^2}} \right| = 3 \text{ or } 4t^4 - 21t^2 = 0.$$

Hence 3 values of t are possible which means there will be three common tangents.

Q.13

For $y^2 = 4ax$ number of normals from (h, k) will be

3 if
$$27ay^2 - 4(x - 2a)^2 < 0$$

2 if $27ay^2 - 4(x - 2a)^2 = 0$
1 if $27ay^2 - 4(x - 2a)^2 > 0$

Hence for $y^2 = 6x \& (2,8), 27ay^2 - 4(x - 2a)^2 = 27 \times \frac{3}{2} \times 64 - 4 \times (2 - 3)^3 > 0$. Only one normal can be drawn.

Q.14

Let focus be S, point of intersection of tangent at P with axis be T & point of intersection of normal at P with axis be N, then by properties of parabola SP=ST=SN.

Hence SP =
$$\frac{\text{TN}}{2}$$
 i.e. $\frac{\sqrt{29}}{2}$. Now $\frac{\sqrt{14k+1}}{k} = \frac{\sqrt{29}}{2} \Rightarrow k = 2$

Q.15

Any point on $y^2 = -8(x+4)$ will be $(-2t^2 - 4, 4t)$.

Chord of contact of this point w.r.to $y^2 = 4x$ will be $4ty = 2x - 2(2t^2 + 4)$. {By T = 0} Now if mid point of this chord is (h,k), then by $T = S_1$ eq. of this chord will be $ky = 2x + k^2 - 2h$.

Comparing the two eqs. gives $t = \frac{k}{4} \& 2(2t^2 + 4) = -k^2 + 2h$. Eliminating t gives $2\left(\frac{k^2}{8} + 4\right) = -k^2 + 2h$.

Required locus is $5y^2 = 8(x-4)$ whose Latus rectum is $\frac{8}{5}$.

Q.16

Tangent to $y^2 = 4x$: $y = mx + \frac{1}{m}$ & Tangent to $x^2 = -32y$: $y = mx + 8m^2$. Comparing the two eqs. gives $\frac{1}{m} = 8m^2$ or $m = \frac{1}{2}$. Hence common tangent is $y = \frac{x}{2} + 2$ or x - 2y + 4 = 0.

Q.17

By properties of a parabola $\frac{SP + SQ}{SP \times SQ} = \frac{1}{a} \Rightarrow a = \frac{1}{7}$. Now L = 2a \Rightarrow 21L = 6.

Q.18

Both the parabolas are symmatric about the line x = y, hence there common normal must be perpendicular to x = y i.e. of slope -1.

Equation of normal to $y^2 = 4 \times \frac{1}{4} (x-1)$ with slope m is $y = m(x-1) - \frac{1}{2}m - \frac{1}{4}m^3$, which is normal at $\left(\frac{m^2}{4} + 1, -\frac{m}{2}\right)$ i.e. $P\left(\frac{5}{4}, \frac{1}{2}\right)$.

Clearly for the other parabola the point at which common normal is drwan will be $Q\left(\frac{1}{2}, \frac{5}{4}\right)$

(image of P in x = y). $PQ = \frac{3\sqrt{2}}{4} \Rightarrow k = 4.$

Q.19

Center of $(x-6)^2 + y^2 = 2$ is (6,0) & $r = \sqrt{2}$. Focus of $y^2 = 16x$ is (4,0). Any line through this point will be mx - y - 4m = 0. As this is tangent to the circle hence $\left|\frac{6m - 0 - 4m}{\sqrt{m^2 + 1}}\right| = \sqrt{2}$. $\Rightarrow m = 1$.